CS21004, Tutorial 3

1. Design NFAs for the following regular expressions over $\Sigma(a b)$
a. $\left(a a^{*}+a b a^{*} b^{*}\right)^{*}$
b. $\left(a b(a+a b)^{*}(a+a a)\right)$
2. Consider the following NFAs and write the equivalent regular expressions

3. Consider a language $\mathrm{L}=w \epsilon \Sigma^{*} \mid w$ contains at least two 0 s, or exactly two 1s. Draw a NFA with six states that accepts this language.
4. Consider the regular expression $R=(a a)^{*}+b^{*}$.
a. Draw an NFA of the above regular expression with not more than 4 states.
b. Draw the equivalent DFA.
c. Find R^{\mid}which recognizes the complement of language recognized by R.
5. Find an NFA that accepts $\left((a+b) a^{*}\right) \bigcap\left(b a a^{*}\right)$.
6. Let $\Sigma=\{1, \#\}$ and let $Y=\left\{w \mid w=x_{1} \# x_{2} \# x_{3} \# \ldots \# x_{k}\right.$ for $k>0, x_{i} \in 1^{*}$ and $x_{i} \neq x_{j}$ for $\left.i \neq j\right\}$
Prove that Y is not regular.
7. Prove or disprove the following languages as regular
(a) $\{w \mid w \in\{0,1\}$ is not a palindrome $\}$.
(b) $\{w \mid w$ contains an equal number of occurrences of the substrings 01 and 10$\}$.
