CS21004 - Tutorial 1

January 8th, 2016

1. Consider the following two languages over the alphabet $\Sigma=\{a, b\}$

$$
\begin{aligned}
L_{1} & =\left\{a^{n}: n \geq 1\right\} \\
L_{2} & =\left\{b^{n}: n \geq 1\right\}
\end{aligned}
$$

Describe the following languages as per the set notations (e.g., as above) as well as the precise definitions in English (e.g., L_{1} can be defined as the set of all strings that have one or more a 's but no b 's).

- $L_{3}=L_{1}{ }^{*}$
- $L_{4}=\overline{L_{1}}$
- $L_{5}=L_{1} \cup L_{2}$
- $L_{6}=L_{1} L_{2}$
- $L_{7}=\left(L_{1}{ }^{2}\right)\left(L_{2}{ }^{2}\right)\left(L_{1}{ }^{2}\right)$
- $L_{8}=\left(L_{1} \cup L_{2}\right)^{*}$
- $L_{9}=\left(L_{1} L_{2}\right)^{+}$

2. Consider the alphabet $\Sigma=\{a, b\}$. Is there any language L over this alphabet for which $(\bar{L})^{*}=\overline{L^{*}}$? If yes, give an example of such a language; if no, explain why.
3. Let $\Sigma=\{a, b\}, L=w \in \Sigma^{+}$. Design an automaton that accepts the language L.
4. A language L is called regular if you can construct a DFA that accepts the language. Consider language L_{1} over $\Sigma=\{a, b\}$, defined as $L_{1}=\left\{w \in \Sigma^{*} \mid w=(a b)^{n}, n \geq 1\right\}$
Is the language L_{1} regular?
5. Let $\Sigma=\{0,1\}$. Give DFA's accepting the following strings

- The set of all strings containing 1101 as substring
- The set of all strings beginning with 101
- The set of all strings that begin with 01 and end with 11
- The set of all strings, when interpreted in reverse as a binary integer, is divisible by 3 .

