1. a)

b)

2. a)

3
So the final expression is $a(a a+b)^{*}+\left(a(a a+b)^{*} a b+b\right)$. $\left(b b+(b a+a)(a a+b)^{*} a b\right)^{)^{*}}((b a+a)(a a+b)$
2.b)

The final regular expression is $(0+1)^{*} 0((0+1)(0+1)(0+1))^{*} 0(0+1)^{*}$
3.

4. as

DFA accepting R

5. DFA for $\left((a+b) a^{*}\right)$

DFA for baa*

The resulting NFA
b

Ans 6.
We take the string $\left.(s)\right|^{p+1^{p+1} \# \ldots 1^{2 p}}$, ie. $k=p+1$ Given p as pumping ler.gth
Foramy breakup $\times y^{z}$ such that $|x y| \leqslant p$ and if $1 \neq \varepsilon$
$\left|x y^{2} z\right|$ will clash with one of the existing st ring lengths.
Ans (a)
A regular language is closed under complementation

So it will suffice to prove that the language of all palindromes is not regular For that we can use the string

$$
0^{P} 10^{p}
$$

$7(b)$ is a regular language

