Formal Languages and Automata Theory
Spring Semester, 2016
08/02/16
Maximum Marks: 20

CS21004
Class Test 1
Time Limit: 1 Hour

This exam contains 1 page and 4 problems.

You should not use your books, notes, or any calculator. Be precise in your answers. Intuitive justifications may not carry any marks, when you are asked to prove. All the sub-parts of a problem should be answered at one place only. On multiple attempts, cross any attempt that you do not want to be graded for.

There are no clarifications. In case of doubt, you can take a valid assumption, state that properly and continue.

1. (4 points) Let L_{1} and L_{2} be two infinite languages, defined over the alphabet $\{a, b\}$, satisfying $L_{1} \cap L_{2}=\phi$ and $L_{1} L_{2}=L_{2} L_{1}$. If such a language pair exists, give an example. If not, you must prove it.
2. (5 points) Construct an NFA to accept the regular expression $b\left(\left((b a)^{*}+b b b\right)^{*}+a\right)^{*} b$, such that the number of states are as minimum as possible. You should not use ϵ-transitions. [Hint: the required states are ≤ 5. You start loosing marks as the number of states in your NFA increase beyond the required number.]
3. (5 points) Show that regular languages are closed under doubling. If language L is regular, then so also is the language L_{2} defined as

$$
L_{2}=\{\text { two } x \mid x \in L\}
$$

where string doubling (two) is defined inductively as

$$
\begin{gathered}
\text { two } \epsilon=\epsilon \\
\text { two } a x=a a \cdot(\text { two } x)
\end{gathered}
$$

4. (6 points) Use the pumping lemma to prove that the following language is non-regular.

$$
L=\left\{b^{p} a b^{q}\left|p, q \geq 0,|p-2 q|=r^{2}, r>0\right\}\right.
$$

