
CS21201 DISCRETE STRUCTURES

Tutorial 3 : Induction and Proof Techniques

August 2025

1. Consider the permutations of 1,2,3,4. For example, 1432 has one ascent 14
(as 1 < 4) and two descents 43 and 32. 1423, similarly, has two ascents (14
and 23) and one descent (42). Let πm,k denote the number of permutations
of 1,2,3...,m with k ascents. Prove that :

πm,k = (k + 1)πm−1,k + (m− k)πm−1,k−1

2. (a) Suppose a, b, k ∈ Z+ and k is not a power of 2. Then prove that if
ak + bk ̸= 2 then ak + bk is composite.

3. Let A = {a1, a2, a3, a4, a5} ⊆ Z+. Prove that A contains a non-empty
subset S such that the sum of the elements in S is a multiple of 5. Here it
is possible to have a sum with only one summand.

4. For n ∈ Z+, let Hn denote the nth Harmonic number.
That is Hn =

∑n
i=1

1
i .

(a) Prove that for all n ∈ Z+, 1 + (n2 ) ≤ H2n

(b) Prove that for all n ∈ Z+,

n∑
j=1

j.Hj =
n(n+ 1)

2
Hn+1 −

n(n+ 1)

4

5. For any n ∈ Z+, we say that n is a perfect integer if 2n = sum of all
positive divisors of n. For example, 2.6 = 1+2+3+6 so 6 is a perfect
number.
If 2m − 1 is prime for a positive integer m, prove that 2m−1(2m − 1) is a
perfect integer.

6. For all positive integers n, show that there exists a prime greater than n.

7. Using the Principle of Mathematical Induction, prove the following :
(a) ∀n ≥ 4 the nth Catalan Number satisfies Cn ≤ 22n−4

(b) If Hn is the nth Harmonic number (see Q4) then prove that ∀n ≥ 1

ln(n+ 1) ≤ Hn ≤ ln(n) + 1
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8. Prove the following using the principle of mathematical induction or other
techniques you know :
(a) ∀n ∈ Z+, 3 | 7n − 4n

(b) ∀n ∈ Z+, n is a perfect square if and only if n has odd number of
positive divisors.

9. Let Fn be the nth Fibonacci Number.
(a) Prove that for all integers m,n with m ≥ 1 and n ≥ 0 we have

Fm+n = FmFn+1 + Fm−1Fn

(b) For m,n ∈ Z+, prove that if m | n then Fm | Fn

(c) Prove or disprove with a counterexample, the converse of (b)
(d) Prove that gcd(Fm, Fn) = Fgcd(m,n),∀m,n ≥ 1

10. Let n ∈ Z+. Consider all non-empty subsets of {1, 2, 3, ...n} that do not
contain consecutive integers. Let Sn denote the sum of squares of the
products of the elements in these subsets.
Prove that Sn = (n+ 1)!− 1,∀n ≥ 1.

For example, for n = 5, all the valid subsets are :
{1}, {2}, {3}, {4}, {5}, {1, 3}, {1, 4}, {1, 5}, {2, 4}, {2, 5}, {3, 5}, {1, 3, 5}.
The sum of squares of products
= 12 + 22 + ...+ 52 + (1.3)2 + (1.4)2 + ...+ (1.3.5)2 = 719 = 5!− 1.

1 Solutions

1. Let x = (x1, x2, x3, ...xm) be a permutation of 1,2,...m with k ascents
(and thus m-k-1) descents. There are two cases :

(a) Ifm = xm or if m occurs in ximxi+2 for 1 ≤ i ≤ m−2 with xi > xi+2,
then the removal of m results in a permutation of 1,2,3,...m-1 with k-
1 ascents, for a total of (1+(m−k−1))πm−1,k−1 = (m−k)πm−1,k−1

permutations.

(b) If m = x1 or if m occurs in ximxi+2 for 1 ≤ i ≤ m−2 with xi < xi+2,
then the removal of m results in a permutation of 1,2,3,...m-1 with k
ascents, for a total of (k + 1)πm−1,k permutations.

Since cases (a) and (b) are disjoint and account for all possibilities, we
have πm,k = (m− k)πm−1,k−1 + (k + 1)πm−1,k

2. (a) Recall that
a3 + b3 = (a+ b)(a2 − ab+ b2

a5 + b5 = (a+ b)(a4 − a3b+ a2b2 − ab3 + b4)
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ap + bp = (a+ b)

p∑
i=1

ap−i(−b)i−1

with p being an odd prime.

Since k is not a power of 2, we can write it as k = r.p where p is an
odd prime and r ≥ 1. Thus

ak + bk = (ar)p + (br)p = (ar + br)

p∑
i=1

ar(p−i)(−b)r(i−1)

Thus ar + br | ak + bk with ar + br ≥ 2 and with the assignment
a = 1, b = 1 forbidden (so that ar + br ̸= ak + bk ), thus it is clear
that ak + bk will be composite.

3. For 1 ≤ i ≤ 5, it follows from the division algorithm that

ai = 5qi + ri, 0 ≤ ri ≤ 4.

So now we shall consider the remainders: r1, r2, r3, r4, r5. It is obvious
that if a selection of the remainders adds to a multiple of 5, then the sum
of the corresponding elements of A will also sum to a multiple of 5. (Note
that for the remainders we need not have five distinct integers.)

(a) If ri = 0 for some 1 ≤ i ≤ 5, then 5 | ai and we are finished. Therefore
we shall assume from this point on that ri ̸= 0 for all 1 ≤ i ≤ 5.

(b) If 1 ≤ r1 = r2 = r3 = r4 = r5 ≤ 4, then

a1 + a2 + · · ·+ a5 = 5(q1 + q2 + · · ·+ q5) + 5r1,

and the result follows. Consequently we now narrow our attention to
the cases where at least two different nonzero remainders occur.

Case 1: (There are at least three 4’s). Here the possibilities to consider
are (i) 4 + 1; (ii) 4 + 4 + 2; and (iii) 4 + 4 + 4 + 3 — these all lead to the
result we are seeking.

Case 2: (We have one or two 4’s). If there is at least one 1, or at least
one 2 and one 3, then we are done. Otherwise we get one of the following
possibilities: (i) 4 + 2 + 2 + 2; or (ii) 4 + 3 + 3.

Case 3: (Now there are no 4’s and at least one 3). Then we either have
(i) 3 + 2; (ii) 3 + 1 + 1; or (iii) 3 + 3 + 3 + 1.

Case 4: (Now we have only 1’s and 2’s as summands). The final possi-
bilities are (i) 2 + 1 + 1 + 1 and (ii) 2 + 2 + 1

Thus, in every possible scenario it is possible to get a subset to remainders
whose sum is divisible by 5.
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4. (a) Once again we start at n = 0. Here we find that

1 = 1 + (0/2) ≤ H1 = H20 ,

so this first case is true. Assuming the truth for n = k ∈ N we obtain
the induction hypothesis

1 +
k

2
≤ H2k .

Turning now to the case where n = k + 1 we find

H2k+1 = H2k +
1

2k + 1
+

1

2k + 2
+ · · ·+ 1

2k + 2k
,

= H2k +
1

2k + 1
+

1

2k + 2
+ · · ·+ 1

2k + 2k
,

= H2k + 2k · 1

2k + 2k
= H2k +

1

2
≥ 1 +

k

2
+

1

2
= 1 +

k + 1

2
.

The result now follows for all n ≥ 0 by the Principle of Mathematical
Induction.

(b) Starting with n = 1 we find that

1∑
j=1

jHj = H1 = 1 =
(2)(1)

2
· 3
2
− (2)(1)

4
=

(2)(1)

2
H2 −

(2)(1)

4
.

Assuming the truth of the given statement for n = k, we have

k∑
j=1

jHj =

[
(k + 1)k

2

]
Hk+1 −

(k + 1)k

4

For n = k + 1 we now find that

k+1∑
j=1

jHj =

k∑
j=1

jHj + (k + 1)Hk+1

=

[
(k + 1)k

2

]
Hk+1 −

(k + 1)k

4
+ (k + 1)Hk+1

= (k + 1)

(
1 +

k

2

)
Hk+1 −

(k + 1)k

4

= (k + 1)

(
1 +

k

2

)(
Hk+2 −

1

k + 2

)
− (k + 1)k

4

=

[
(k + 2)(k + 1)

2

]
Hk+2 −

(k + 1)(k + 2)

2(k + 2)
− (k + 1)k

4
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=

[
(k + 2)(k + 1)

2

]
Hk+2 −

1

4
[2(k + 1) + k(k + 1)]

=

[
(k + 2)(k + 1)

2

]
Hk+2 −

(k + 2)(k + 1)

4

Consequently, by the Principle of Mathematical Induction, it follows
that the given statement is true for all n ∈ Z+.

5. The divisors of 2m−1(2m−1) , where 2m−1 is a prime, are 1, 2, 22, 23, ..., 2m−1

and (2m − 1), 2(2m − 1), 22(2m − 1), ..., 2m−1(2m − 1). Thus, the sum of
divisors = 2m − 1 + (2m − 1)(2m − 1) = 2.2m−1(2m − 1), thus the given
integer is a perfect number.

6. Assume that there is no prime > n. Then we have a finite set of primes,
called P = {p1, p2, p3, ...pk} for some k ∈ Z+. Consider a number
c = pα1

1 pα2
2 ...pαk

k + 1 where αi ∈ Z+ and c > n by taking arbitrarily large
αi.

Now, c /∈ P =⇒ c is composite. But c = 1 mod pi for all i ∈ {1, 2, ...k}.
Thus no prime number divides c =⇒ c is not composite. This is a con-
tradiction, it means that there must be primes greater than n, as we have
constructed one such prime number ourselves.

7. (a) Solution:

[Basis] For n = 4,
C4 = 14 ≤ 28−4 = 16.

[Induction] Assume that

Cn ≤ 22n−4.

Then

Cn+1 =
1

n+ 2

(
2n+ 2

n+ 1

)
=

1

n+ 2
· (2n+ 2)(2n+ 1)

(n+ 1)2

(
2n

n

)
=

2(2n+ 1)

n+ 2
Cn.

Now,
(2n+ 1) ≤ 2(n+ 2).

Therefore,

Cn+1 =
2(2n+ 1)

n+ 2
Cn ≤ 4Cn ≤ 22(n+1)−4

Thus the induction hypothesis holds and the given proposition is
proven true.
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(b) The harmonic numbers

Hn =
1

1
+

1

2
+ · · ·+ 1

n

satisfy
ln(n+ 1) ≤ Hn ≤ lnn+ 1, ∀n ≥ 1.

Solution:

[Basis]
ln(1 + 1) = ln(2) ≤ H1 = 1 ≤ ln 1 + 1 = 1.

[Induction] Assume the condition holds for Hn.

Hn+1 = Hn +
1

n+ 1
≤ 1 + lnn+

1

n+ 1
.

= 1 + ln(n+ 1) +
1

n+ 1
+ (lnn− ln(n+ 1)).

= 1 + ln(n+ 1) +
1

n+ 1
+ ln

(
1− 1

n+ 1

)
.

= 1+ln(n+1)+
1

n+ 1
− 1

n+ 1
− 1

2(n+ 1)2
− 1

3(n+ 1)3
· · · (n ≥ 1).

= 1 + ln(n+ 1)−
[

1

2(n+ 1)2
+

1

3(n+ 1)3
+ · · ·

]
.

≤ 1 + ln(n+ 1).

Similarly,

Hn+1 = Hn +
1

n+ 1
≥ ln(n+ 1) +

1

n+ 1
.

Hn+1 ≥ ln(n+ 1) +
1

n+ 1
− ln(n+ 2) + ln(n+ 2).

Hn+1 ≥ ln

(
n+ 1

n+ 2

)
+

1

n+ 1
+ ln(n+ 2).

= − ln

(
1 +

1

n+ 1

)
+

1

n+ 1
+ ln(n+ 2).

Hn+1 ≥ 1

n+ 1
−
(

1

n+ 1
− 1

2(n+ 1)2
+

1

3(n+ 1)3
− · · ·

)
+ln(n+2).
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≥ ln(n+ 2).

Thus the induction hypothesis holds and the given proposition is
proven true.

8. (a) For n = 0 we have

7n − 4n = 70 − 40 = 1− 1 = 0,

and 3 | 0. So the result is true for this first case.

Assuming the truth for n = k we have 3 | (7k − 4k). Turning to the
case for n = k + 1 we find that

7k+1−4k+1 = 7(7k)−4(4k) = (3+4)(7k)−4(4k) = 3(7k)+4(7k−4k).

Since 3 | 3 and 3 | (7k − 4k) (by the induction hypothesis), it is clear
that

3 |
[
3(7k) + 4(7k − 4k)

]
,

that is,
3 | (7k+1 − 4k+1).

It now follows by the Principle of Mathematical Induction that

3 | (7n − 4n) for all n ∈ N.

(b) If n ∈ Z+ and n is a perfect square, then

n = pe11 pe22 · · · pekk ,

where pi is prime and ei is a positive even integer for all 1 ≤ i ≤ k.
Hence

(e1 + 1)(e2 + 1) · · · (ek + 1)

is a product of odd integers. Therefore the number of positive divisors
of n is odd.

Conversely, if n ∈ Z+ and n is not a perfect square, then

n = pe11 pe22 · · · pekk ,

where each pi is prime and ei is odd for some 1 ≤ i ≤ k. Therefore
(ei + 1) is even for some 1 ≤ i ≤ k, so

(e1 + 1)(e2 + 1) · · · (ek + 1)

is even and n has an even number of positive divisors.

9. Find the solution below :

10. Find the solution below :
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