CS21201 DISCRETE STRUCTURES
Tutorial 3 : Induction and Proof Techniques

August 2025

. Consider the permutations of 1,2,3,4. For example, 1432 has one ascent 14
(as 1 < 4) and two descents 43 and 32. 1423, similarly, has two ascents (14
and 23) and one descent (42). Let m, 1, denote the number of permutations
of 1,2,3...,m with k ascents. Prove that :

Tk = (B 4+ 1)1+ (M — E)Tm—1 k-1

(a) Suppose a,b,k € ZT and k is not a power of 2. Then prove that if
ak + b* # 2 then a* + b* is composite.

. Let A = {al,a2,a3,a4,ab} C Z*. Prove that A contains a non-empty
subset S such that the sum of the elements in S is a multiple of 5. Here it
is possible to have a sum with only one summand.

. For n € Z*, let H, denote the nth Harmonic number.
That is H, = Y1 +.
(a) Prove that for all n € Z, 1+ (%) < Han
(b) Prove that for all n € Z*,

. nn+1 n(n—+1
Z]-Hj:%Hn-‘rl_%

. For any n € Z*, we say that n is a perfect integer if 2n = sum of all
positive divisors of n. For example, 2.6 = 1424346 so 6 is a perfect
number.

If 2™ — 1 is prime for a positive integer m, prove that 2m~1(2™ — 1) is a
perfect integer.

. For all positive integers n, show that there exists a prime greater than n.

. Using the Principle of Mathematical Induction, prove the following :
(a) Vn > 4 the nth Catalan Number satisfies C,, < 22n—4
(b) If H, is the nth Harmonic number (see Q4) then prove that Vn > 1

In(n+1) < H, <lIn(n)+1



8. Prove the following using the principle of mathematical induction or other
techniques you know :
(a) Vn € ZT,3 | 7" — 4"
(b) ¥n € Z*, n is a perfect square if and only if n has odd number of
positive divisors.

9. Let F}, be the nth Fibonacci Number.
(a) Prove that for all integers m,n with m > 1 and n > 0 we have

Fm+n:Fan+1+Fm—1Fn

(b) For m,n € Z*, prove that if m | n then F,, | F,
(¢) Prove or disprove with a counterexample, the converse of (b)
(d) Prove that ged(Fp, Fr) = Fyea(m,n), Vm,n > 1

10. Let n € Z*. Consider all non-empty subsets of {1,2,3,...n} that do not
contain consecutive integers. Let S, denote the sum of squares of the
products of the elements in these subsets.

Prove that S,, = (n+ 1)! = 1,¥n > 1.

For example, for n = 5, all the valid subsets are :

{1}, {2}, {3}, {4}, {5}, {1, 3}, {1,4},{1,5},{2,4},{2,5},{3,5}, {1, 3,5}.

The sum of squares of products
= 124224 4524+ (1.3)2 + (1.4)% + ... + (1.3.5)2 =719 = 5! — 1.

Solutions

1. Let @ = (x1, 22,23, ...T:m) be a permutation of 1,2,...m with k ascents
(and thus m-k-1) descents. There are two cases :

(a) If m = a,, or if m occurs in z;mz; 42 for 1 < i < m—2 with z; > 2,42,
then the removal of m results in a permutation of 1,2,3,...m-1 with k-
1 ascents, for a total of (14+(m—k—1))Tpm_15-1 = (M—E)Tm_15-1
permutations.

(b) If m = x; or if m occurs in z;mx;4o for 1 < i < m—2 with x; < z;4o,
then the removal of m results in a permutation of 1,2,3,...m-1 with k
ascents, for a total of (k + 1)m,,_1 , permutations.

Since cases (a) and (b) are disjoint and account for all possibilities, we
have Tk = (m — k)mpm—1.5-1 + (K + 1)Tm—1.%

2. (a) Recall that
a® +b® = (a+b)(a* —ab+ V?

a® +b° = (a +b)(a* — a®b+ a®b? — ab® + b?)



P
a’ + b = (a+b) Z aP~ i (—b) !
i=1

with p being an odd prime.
Since k is not a power of 2, we can write it as k = r.p where p is an
odd prime and r > 1. Thus

P
ak + bk — (ar)p 4 (br)p — (CLT + br) Zar(p—i)(_b)r(i—l)

=1

Thus a” + b" | a® + b* with a” + b" > 2 and with the assignment
a = 1,b = 1 forbidden (so that a” + b" # a* + b* ), thus it is clear
that a* + b* will be composite.

3. For 1 <4 <5, it follows from the division algorithm that
a; =5¢; +1;, 0<r; <4

So now we shall consider the remainders: rq,7r9,73,74,75. It is obvious
that if a selection of the remainders adds to a multiple of 5, then the sum
of the corresponding elements of A will also sum to a multiple of 5. (Note
that for the remainders we need not have five distinct integers.)

(a) Ifr; = 0 for some 1 < i < 5, then 5 | a; and we are finished. Therefore
we shall assume from this point on that r; # 0 for all 1 <14 < 5.

(b) f1<ri=rg=r3=ry =15 <4, then
ap+az+ - +as =5(q1 + g2+ - +gs5) +5r1,

and the result follows. Consequently we now narrow our attention to
the cases where at least two different nonzero remainders occur.

Case 1: (There are at least three 4’s). Here the possibilities to consider
are (i) 44 1; (ii) 4+ 4+ 2; and (iii) 4 + 4 + 4 + 3 — these all lead to the
result we are seeking.

Case 2: (We have one or two 4’s). If there is at least one 1, or at least
one 2 and one 3, then we are done. Otherwise we get one of the following
possibilities: (i) 442+ 24 2; or (i) 4+ 3 + 3.

Case 3: (Now there are no 4’s and at least one 3). Then we either have
(1) 3+2; (i1) 3+ 1+ 1; or (iil) 3+3+3+ 1.

Case 4: (Now we have only 1’s and 2’s as summands). The final possi-
bilities are (i) 2+ 14+ 141 and (ii) 2+ 2+ 1

Thus, in every possible scenario it is possible to get a subset to remainders
whose sum is divisible by 5.



4.

(a) Once again we start at n = 0. Here we find that
1=1+(0/2) < Hy = Hyo,

so this first case is true. Assuming the truth for n = k € N we obtain
the induction hypothesis

k

Turning now to the case where n = k + 1 we find

1 1 1
Mo = Mo 4 g gy T g
TR T S
T T o Tak g2 2k 4 2k’
1 1 E o1 k+1
_ k _ _

The result now follows for all n > 0 by the Principle of Mathematical
Induction.

(b) Starting with n = 1 we find that

1
2)(1 2(1)  (2)(1 2)(1
ZjHj:H1:1:()()g_( ) _ @A), Q)
j=1
Assuming the truth of the given statement for n = k, we have

k
. (k+ Dk (k+ Dk
;]Hj = [2} Hyy1 — 1

For n = k + 1 we now find that

k+1
Z;H Z]H + (k+1)Hp 41

j=1

e ) () -5

(k+1)(k+2) (k+1k
2(k+2) 4




[+ 2+ 1)
_ [2

_ {(mz)(m 1)

] Hyqo — i 2(k+1) + k(k +1)]

(k+2)(k+1)

4

H, —
)

Consequently, by the Principle of Mathematical Induction, it follows
that the given statement is true for all n € Z*.

5. The divisors of 2™~1(2™—1) | where 2™ —1 is a prime, are 1,2,22,23, ..., 2m~1
and (2™ —1),2(2™ —1),2%(2™ — 1),...,2m~1(2™ — 1). Thus, the sum of
divisors = 2™ — 1+ (2™ — 1)(2™ — 1) = 2.2™1(2™ — 1), thus the given
integer is a perfect number.

6. Assume that there is no prime > n. Then we have a finite set of primes,
called P = {p1,p2, p3, ...px } for some k € Z*. Consider a number
c=pi'ps?..pp* +1 where o; € ZT and ¢ > n by taking arbitrarily large
(678

Now, ¢ ¢ P = c is composite. But ¢ =1 mod p; for all i € {1,2,...k}.
Thus no prime number divides ¢ = c¢ is not composite. This is a con-
tradiction, it means that there must be primes greater than n, as we have
constructed one such prime number ourselves.

7. (a) Solution:
[Basis| For n = 4,
Cy =14 <2871 = 16.

[Induction] Assume that

Cn < 2271—4.
Then
o 1 2n+2\ 1 (2n+2)(2n+1) (2n _2(2n+1)c
T2\ n+1)  n+2 (n+1)2 n) n+2 "

Now,

2n+1) <2(n+2).
Therefore,

Cpi1 = Mcn <40, < 92(n+1)—4
n+2

Thus the induction hypothesis holds and the given proposition is
proven true.



(b) The harmonic numbers

1 1
Hn = — — PN —
1 + 2 + + n
satisfy
In(n+1)<H,<lnn+1, Vn>1.
Solution:
[Basis]

In(l141)=mIn(2)<H; =1<lnl+4+1=1.

[Induction] Assume the condition holds for H,,.

1
H,1=H,+——<1+1 .
+ Jrn—i—l_ +nn+n+1

1
= 1+ln(n—|—1)—&—m—i—(lnn—ln(n—&—l)).

1 1
=1+1 N+ ——+n(1l-———].
+in(n+ )+n—|—1+n< n+1>

1 1 1 1

=1+1 1 - - -
+in(n+ >+n+1 n+l 2n+1)2 3n+1)3

(n>1).

1 1
=1+In(n+1)-— [2(n+1)2 +3(n—|—1)3+”}'

<1+1In(n+1).

Similarly,

1

1
H, . 1.=H,+——>1 1 .
+ +n+1 n(n+ )+n+1

1
Hyp1 >In(n+1)+ e In(n + 2) + In(n + 2).

n+1 1
H, >1 1 2).
n+1_n(n+2)+n+1—|—n(n+)

1 1
=—In(l+—)+— +1 2).
n< +n+1)+n+1+n(n+ )

1 1 1 1
Hyppr > - . — )+ In(n+2).
T (n+1 2+ 12 B+l >+n("+)



> In(n + 2).

Thus the induction hypothesis holds and the given proposition is
proven true.

8. (a) For n =0 we have
g =70 —49=1-1=0,

and 3 | 0. So the result is true for this first case.

Assuming the truth for n = k we have 3 | (7% — 4F). Turning to the
case for n = k + 1 we find that

TRHL _gRHL — 7(7F) —4(4%) = (34+-4)(7F) —4(4%) = 3(7F) +-4(7F —4F).

Since 3 | 3 and 3 | (7* — 4*) (by the induction hypothesis), it is clear
that
3 [3(7%) + 4(7F — 4],

that is,
3 | (7k‘+1 _ 4k+1).

It now follows by the Principle of Mathematical Induction that

3| (7" —4") forallneN.
(b) If n € Z* and n is a perfect square, then
n=py'py it

where p; is prime and e; is a positive even integer for all 1 < ¢ < k.
Hence
(e1+1)(ea+1)---(ep+ 1)

is a product of odd integers. Therefore the number of positive divisors
of n is odd.

Conversely, if n € ZT and n is not a perfect square, then
n=pips® Pt

where each p; is prime and e; is odd for some 1 < i < k. Therefore
(ei + 1) is even for some 1 < i < k, so

(e1+1)(ea+1)---(ex+1)
is even and n has an even number of positive divisors.
9. Find the solution below :

10. Find the solution below :
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