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Tutorial 4
Discrete Mathematics

Countable and Uncountable Sets

1. Let A and B be uncountable sets with A ✓ B. Prove or disprove: A and B are equinumerous.

Solution:

The statement is false. An uncountable subset of an uncountable set need not be equinumerous with
the larger set.

Counterexample: Let B = P(R) and A = {{x} | x 2 R}.

(a) A ✓ B: each {x} is a subset of R, hence an element of P(R).
(b) A is uncountable: the map f : R ! A, f(x) = {x} is a bijection, so |A| = |R| = c.
(c) B is uncountable: |B| = |P(R)| = 2c.

Comparison:

|A| = c, |B| = 2c, c < 2c (Cantor’s Theorem).

Thus |A| 6= |B|, so A and B are not equinumerous.

2. Let A be an uncountable set and B a countably infinite subset of A. Prove or disprove: A is
equinumerous with A \B.

Solution:

The statement is true. If A is uncountable and B ✓ A is countably infinite, then A is equinumerous
with A \B.

Construction: Since A is uncountable and B is countable, A \ B is uncountable. In particular, it
contains a countably infinite subset C. Write

B = {b1, b2, b3, . . . }, C = {c1, c2, c3, . . . } ✓ A \B.

Define f : A ! A \B by

f(bn) = c2n�1, f(cn) = c2n, f(x) = x for x 2 A \ (B [ C).

Verification:

(a) Codomain: Every image lies in A \B, since no bn remains in the image.
(b) Injective: Images of B, odd-indexed C, and A \ (B [ C) are disjoint, so no collisions occur.
(c) Surjective:

• If y 2 (A \B) \ C, then f(y) = y.
• If y = c2n, then f(cn) = y.
• If y = c2n�1, then f(bn) = y.

Thus every element of A \B is attained.

Conclusion: The function f is a bijection, hence

A ⇠= A \B.

(Equivalently: for any infinite cardinal , + @0 = .)
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3. Prove that the real interval [0, 1) is equinumerous with the unit square [0, 1)⇥ [0, 1).

Solution The sets F = Q\ [0, 1) and F2 are countable. Therefore A = [0, 1)�F and B = [0, 1)2�F2

are equinumerous with [0, 1) and [0, 1)2, respectively.

Now, define the map

f : B ! A, (0.a1a2a3 . . . , 0.b1b2b3 . . . ) 7! 0.a1b1a2b2a3b3 . . . .

Clearly, f is injective. Thus, |B|  |A|.
The other inequality |A|  |B| is simpler: map

0.c1c2c3 . . . 7! (0.c1c2c3 . . . , 0.c1c2c3 . . . ).

4. Let a, b, c, d 2 R with a < b and c < d. Show that, [a, b)⇥ [c, d) is equinumerous with [0, 1).

Solution:

Define f : [a, b) ! [0, 1) such that

f(x) =
x� a

b� a

Define g : [c, d) ! [0, 1) such that

g(y) =
y � c

d� c

Now, show that f is bijective ( show f is one to one and onto ). Similarly, g is also bijective.

Define h : [a, b)⇥ [c, d] ! [0, 1)2 such that

h(x, y) = (f(x), g(y))

Now, show that h is bijective ( show h is one to one and onto ). We have shown that [a, b) ⇥ [c, d) is
equinumerous with [0, 1)2.

From 3rd question, we know [0, 1)2 is equinumerous with [0, 1)

5. Define a relation ⇠ on R such that a ⇠ b if and only if a� b 2 Q. Answer the following:

(a) Prove that ⇠ is an equivalence relation.
(b) Is the set R/ ⇠ of all equivalence classes of ⇠ countable?

Solution:

(a) We show that ⇠ is an equivalence relation on R.

- Reflexive: For all a 2 R, a � a = 0 2 Q. Hence a ⇠ a. - Symmetric: If a ⇠ b, then a � b 2 Q.
Thus b�a = �(a� b) 2 Q, so b ⇠ a. - Transitive: If a ⇠ b and b ⇠ c, then a� b 2 Q and b� c 2 Q.
Adding gives a� c = (a� b) + (b� c) 2 Q, so a ⇠ c.

Therefore ⇠ is an equivalence relation.

(b) Consider the set R/ ⇠ of equivalence classes.

For x 2 R,

[x] = { y 2 R : y � x 2 Q } = {x+ q : q 2 Q }.

The map q 7! x+ q is a bijection Q ! [x], so each equivalence class [x] is countable.

The distinct equivalence classes correspond to distinct cosets of Q in R. If [x] = [y], then x� y 2 Q;
if [x] 6= [y], then x� y /2 Q. Thus R/ ⇠ has as many elements as R/Q, which is uncountable.

Hence each class is countable, but the set of all equivalence classes R/ ⇠ is uncountable.
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6. Let Z[x] denote the set of all univariate polynomials with integer coefficients.

Answer the following:

(a) Prove that Z[x] is countable.
Solution Z[x] is the countable union of {0} and Zd[x] for d 2 N0, where Zd[x] is the set of all
univariate polynomials with integer coefficients and degree exactly equal to d. Such a polynomial
can be written as

adx
d + ad�1x

d�1 + · · ·+ a2x
2 + a1x+ a0,

with ai 2 Z and ad 6= 0. Since each ai has countably many possibilities, and there are only
finitely many coefficients (d+ 1 of them), each Zd[x] is countable.

(b) A real or complex number a is called algebraic if f(a) = 0 for some non-zero f(x) 2 Z[x]. Let
A denote the set of all algebraic numbers. Prove that A is countable.
Solution There are countably many polynomials in Z[x] \ {0}. Each such polynomial has only
finitely many roots.

(c) Prove that there are uncountably many transcendental (i.e. non-algebraic) numbers.
Solution R is the disjoint union of R\A and the set T of all (real) transcendental numbers. Since
A is countable, so too is R \A. If T is countable, then R is countable too.

7. Let Z[x, y] be the set of all bivariate polynomials with integer coefficients.

Answer the following:

(a) Prove that Z[x, y] is countable.
(b) Let V =

�
(a, b) 2 C⇥ C | f(a, b) = 0 for some nonzero f(x, y) 2 Z[x, y]

 
. Is V countable?

Solution:

(a) Z[x, y] is countable.

Any polynomial f(x, y) 2 Z[x, y] can be written as a finite sum of monomials

f(x, y) =
X

aijx
iyj ,

where aij 2 Z and i, j 2 N0. Each polynomial is thus uniquely represented by a finite set of triples
(aij , i, j) 2 Z⇥ N0 ⇥ N0.

1. The set A = Z⇥N0⇥N0 is countable since it is a finite product of countable sets. 2. A polynomial
corresponds to a finite sequence of elements of A. The collection of all finite sequences from A can
be written as

S =
1[

k=1

Ak,

where Ak is the set of k-tuples from A. Each Ak is countable, and the countable union of countable
sets is countable. 3. Thus, Z[x, y] injects into S, so Z[x, y] is countable.

—

(b) V is uncountable.

Define

V = {(a, b) 2 C⇥ C : f(a, b) = 0 for some nonzero f(x, y) 2 Z[x, y]}.

1. Since Z[x, y] is countable, we may enumerate its nonzero elements as {fk : k 2 N}. For each fk,
define its zero set

Vk = {(a, b) 2 C2 : fk(a, b) = 0}.
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Then

V =
1[

k=1

Vk.

2. Consider f(x, y) = x� c for some fixed c 2 Z. Its zero set is

Vc = {(a, b) 2 C2 : a� c = 0} = {(c, b) : b 2 C}.

This set is in bijection with C, which is uncountable.

3. Since V contains Vc as a subset, and Vc is uncountable, it follows that V is uncountable.

⇤

8. A set S ✓ R is called bounded if S has both a lower bound and an upper bound.

Provide examples for the following.

(a) Countable bounded subset of R.

(b) Uncountable bounded subset of R.

Determine whether the following sets are countable/uncountable?

(c) The set of all bounded subsets of Z.

(d) The set of all bounded subsets of Q.

Solution:

(a) A countable bounded subset of R: Any finite subset of R, is countable and will have a minimum
and maximum.

(b) An uncountable bounded subset of R:

S = [0, 1].

This set is bounded below by 0 and above by 1. It is uncountable by Cantor’s diagonal argument.

(c) The set of all bounded subsets of Z is countable.
A bounded subset of Z means a set of integers that lies between some lower bound l and upper
bound u. If S ✓ Z has bounds l, u 2 R, then

S ✓ [dle, buc] \ Z.

Hence S is contained in some finite interval of integers.
The power set of a finite set is finite (hence countable). Since there are only countably many
choices for the integer bounds l, u, the collection of all bounded subsets of Z is a countable union
of finite sets, which is countable.
Therefore, the set of all bounded subsets of Z is countable.

(d) The set of all bounded of Q.
Uncountable. Let B denote the set of all bounded subsets of Q. Define f : R ! B as follows: -
If x 2 Q, set f(x) = {x}. - If x 2 R \Q, let a = bxc. Then x� a 2 [0, 1) has infinite decimal
expansion 0.d1d2d3 . . .. Define

f(x) = {a, a+ 0.d1, a+ 0.d1d2, a+ 0.d1d2d3, . . .}.

Each f(x) is a bounded subset of Q, and f is injective. Thus B is uncountable.
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9. Provide a diagonalization argument to prove that the set of all infinite bit sequences is uncountable.
Solution:

Assume S (all infinite bit sequences) is countable. Then there is a bijection

f : N ! S.

Write

f(1) = a11, a12, a13, . . .
f(2) = a21, a22, a23, . . .
f(3) = a31, a32, a33, . . .

...
f(n) = an1, an2, an3, . . .

...

Define the diagonal-complement sequence

s = (a011, a
0
22, a

0
33, . . . , a

0
nn, . . .),

where a0ij is the bit complement of aij .

For each n, the n-th bit of s is a0nn 6= ann, so s 6= f(n) for all n. Hence f is not surjective, a
contradiction. Therefore S is uncountable.
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