Tutorial 4

Practice Solutions

Discrete Mathematics

Countable and Uncountable Sets

1. Let A and B be uncountable sets with $A \subseteq B$. Prove or disprove: A and B are equinumerous.

Solution:

The statement is **false**. An uncountable subset of an uncountable set need not be equinumerous with the larger set.

Counterexample: Let $B = \mathcal{P}(\mathbb{R})$ and $A = \{\{x\} \mid x \in \mathbb{R}\}.$

- (a) $A \subseteq B$: each $\{x\}$ is a subset of \mathbb{R} , hence an element of $\mathcal{P}(\mathbb{R})$.
- (b) A is uncountable: the map $f: \mathbb{R} \to A$, $f(x) = \{x\}$ is a bijection, so $|A| = |\mathbb{R}| = \mathfrak{c}$.
- (c) B is uncountable: $|B| = |\mathcal{P}(\mathbb{R})| = 2^{\mathfrak{c}}$.

Comparison:

$$|A| = \mathfrak{c}, \qquad |B| = 2^{\mathfrak{c}}, \qquad \mathfrak{c} < 2^{\mathfrak{c}}$$
 (Cantor's Theorem).

Thus $|A| \neq |B|$, so A and B are not equinumerous.

2. Let A be an uncountable set and B a countably infinite subset of A. Prove or disprove: A is equinumerous with $A \setminus B$.

Solution:

The statement is **true**. If A is uncountable and $B \subseteq A$ is countably infinite, then A is equinumerous with $A \setminus B$.

<u>Construction</u>: Since A is uncountable and B is countable, $A \setminus B$ is uncountable. In particular, it contains a countably infinite subset C. Write

$$B = \{b_1, b_2, b_3, \dots\}, \qquad C = \{c_1, c_2, c_3, \dots\} \subseteq A \setminus B.$$

Define $f:A\to A\setminus B$ by

$$f(b_n) = c_{2n-1},$$
 $f(c_n) = c_{2n},$ $f(x) = x$ for $x \in A \setminus (B \cup C).$

Verification:

- (a) **Codomain:** Every image lies in $A \setminus B$, since no b_n remains in the image.
- (b) **Injective:** Images of B, odd-indexed C, and $A \setminus (B \cup C)$ are disjoint, so no collisions occur.
- (c) Surjective:
 - If $y \in (A \setminus B) \setminus C$, then f(y) = y.
 - If $y = c_{2n}$, then $f(c_n) = y$.
 - If $y = c_{2n-1}$, then $f(b_n) = y$.

Thus every element of $A \setminus B$ is attained.

Conclusion: The function f is a bijection, hence

$$A \cong A \setminus B$$
.

(Equivalently: for any infinite cardinal κ , $\kappa + \aleph_0 = \kappa$.)

3. Prove that the real interval [0,1) is equinumerous with the unit square $[0,1)\times[0,1)$.

Solution The sets $\mathbb{F} = \mathbb{Q} \cap [0,1)$ and \mathbb{F}^2 are countable. Therefore $A = [0,1) - \mathbb{F}$ and $B = [0,1)^2 - \mathbb{F}^2$ are equinumerous with [0,1) and $[0,1)^2$, respectively.

Now, define the map

$$f: B \to A, \quad (0.a_1a_2a_3..., 0.b_1b_2b_3...) \mapsto 0.a_1b_1a_2b_2a_3b_3....$$

Clearly, f is injective. Thus, |B| < |A|.

The other inequality $|A| \leq |B|$ is simpler: map

$$0.c_1c_2c_3... \mapsto (0.c_1c_2c_3..., 0.c_1c_2c_3...).$$

4. Let $a, b, c, d \in \mathbb{R}$ with a < b and c < d. Show that, $[a, b) \times [c, d)$ is equinumerous with [0, 1).

Solution:

Define $f:[a,b) \to [0,1)$ such that

$$f(x) = \frac{x - a}{b - a}$$

Define $q:[c,d) \rightarrow [0,1)$ such that

$$g(y) = \frac{y-c}{d-c}$$

Now, show that f is bijective (show f is one to one and onto). Similarly, g is also bijective.

Define $h:[a,b)\times[c,d]\to[0,1)^2$ such that

$$h(x,y) = (f(x), g(y))$$

Now, show that h is bijective (show h is one to one and onto). We have shown that $[a,b) \times [c,d)$ is equinumerous with $[0,1)^2$.

From 3rd question, we know $[0,1)^2$ is equinumerous with [0,1)

- 5. Define a relation \sim on $\mathbb R$ such that $a \sim b$ if and only if $a b \in \mathbb Q$. Answer the following:
 - (a) Prove that \sim is an equivalence relation.
 - (b) Is the set \mathbb{R}/\sim of all equivalence classes of \sim countable?

Solution:

- (a) We show that \sim is an equivalence relation on \mathbb{R} .
- Reflexive: For all $a \in \mathbb{R}$, $a-a=0 \in \mathbb{Q}$. Hence $a \sim a$. Symmetric: If $a \sim b$, then $a-b \in \mathbb{Q}$. Thus $b-a=-(a-b) \in \mathbb{Q}$, so $b \sim a$. Transitive: If $a \sim b$ and $b \sim c$, then $a-b \in \mathbb{Q}$ and $b-c \in \mathbb{Q}$. Adding gives $a-c=(a-b)+(b-c) \in \mathbb{Q}$, so $a \sim c$.

Therefore \sim is an equivalence relation.

(b) Consider the set \mathbb{R}/\sim of equivalence classes.

For $x \in \mathbb{R}$,

$$[x] = \{ y \in \mathbb{R} : y - x \in \mathbb{Q} \} = \{ x + q : q \in \mathbb{Q} \}.$$

The map $q \mapsto x + q$ is a bijection $\mathbb{Q} \to [x]$, so each equivalence class [x] is countable.

The distinct equivalence classes correspond to distinct cosets of \mathbb{Q} in \mathbb{R} . If [x] = [y], then $x - y \in \mathbb{Q}$; if $[x] \neq [y]$, then $x - y \notin \mathbb{Q}$. Thus \mathbb{R}/\sim has as many elements as \mathbb{R}/\mathbb{Q} , which is uncountable.

Hence each class is countable, but the set of all equivalence classes \mathbb{R}/\sim is uncountable.

6. Let $\mathbb{Z}[x]$ denote the set of all univariate polynomials with integer coefficients.

Answer the following:

(a) Prove that $\mathbb{Z}[x]$ is countable.

Solution $\mathbb{Z}[x]$ is the countable union of $\{0\}$ and $\mathbb{Z}_d[x]$ for $d \in \mathbb{N}_0$, where $\mathbb{Z}_d[x]$ is the set of all univariate polynomials with integer coefficients and degree exactly equal to d. Such a polynomial can be written as

$$a_d x^d + a_{d-1} x^{d-1} + \dots + a_2 x^2 + a_1 x + a_0$$

with $a_i \in \mathbb{Z}$ and $a_d \neq 0$. Since each a_i has countably many possibilities, and there are only finitely many coefficients (d+1) of them, each $\mathbb{Z}_d[x]$ is countable.

- (b) A real or complex number a is called algebraic if f(a) = 0 for some non-zero $f(x) \in \mathbb{Z}[x]$. Let \mathbb{A} denote the set of all algebraic numbers. Prove that \mathbb{A} is countable. Solution There are countably many polynomials in $\mathbb{Z}[x] \setminus \{0\}$. Each such polynomial has only finitely many roots.
- (c) Prove that there are uncountably many transcendental (i.e. non-algebraic) numbers. Solution \mathbb{R} is the disjoint union of $\mathbb{R} \cap A$ and the set \mathbb{T} of all (real) transcendental numbers. Since A is countable, so too is $\mathbb{R} \cap A$. If \mathbb{T} is countable, then \mathbb{R} is countable too.
- 7. Let $\mathbb{Z}[x,y]$ be the set of all bivariate polynomials with integer coefficients.

Answer the following:

- (a) Prove that $\mathbb{Z}[x,y]$ is countable.
- (b) Let $V = \{(a,b) \in \mathbb{C} \times \mathbb{C} \mid f(a,b) = 0 \text{ for some nonzero } f(x,y) \in \mathbb{Z}[x,y] \}$. Is V countable?

Solution:

(a) $\mathbb{Z}[x,y]$ is countable.

Any polynomial $f(x,y) \in \mathbb{Z}[x,y]$ can be written as a finite sum of monomials

$$f(x,y) = \sum a_{ij}x^iy^j,$$

where $a_{ij} \in \mathbb{Z}$ and $i, j \in \mathbb{N}_0$. Each polynomial is thus uniquely represented by a finite set of triples $(a_{ij}, i, j) \in \mathbb{Z} \times \mathbb{N}_0 \times \mathbb{N}_0$.

1. The set $A = \mathbb{Z} \times \mathbb{N}_0 \times \mathbb{N}_0$ is countable since it is a finite product of countable sets. 2. A polynomial corresponds to a finite sequence of elements of A. The collection of all finite sequences from A can be written as

$$S = \bigcup_{k=1}^{\infty} A^k,$$

where A^k is the set of k-tuples from A. Each A^k is countable, and the countable union of countable sets is countable. 3. Thus, $\mathbb{Z}[x,y]$ injects into S, so $\mathbb{Z}[x,y]$ is countable.

(b) V is uncountable.

Define

$$V = \{(a, b) \in \mathbb{C} \times \mathbb{C} : f(a, b) = 0 \text{ for some nonzero } f(x, y) \in \mathbb{Z}[x, y]\}.$$

1. Since $\mathbb{Z}[x,y]$ is countable, we may enumerate its nonzero elements as $\{f_k : k \in \mathbb{N}\}$. For each f_k , define its zero set

$$V_k = \{(a, b) \in \mathbb{C}^2 : f_k(a, b) = 0\}.$$

Then

$$V = \bigcup_{k=1}^{\infty} V_k.$$

2. Consider f(x,y) = x - c for some fixed $c \in \mathbb{Z}$. Its zero set is

$$V_c = \{(a, b) \in \mathbb{C}^2 : a - c = 0\} = \{(c, b) : b \in \mathbb{C}\}.$$

This set is in bijection with \mathbb{C} , which is uncountable.

3. Since V contains V_c as a subset, and V_c is uncountable, it follows that V is uncountable.

8. A set $S \subseteq \mathbb{R}$ is called bounded if S has both a lower bound and an upper bound.

Provide examples for the following.

- (a) Countable bounded subset of \mathbb{R} .
- (b) Uncountable bounded subset of \mathbb{R} .

Determine whether the following sets are countable/uncountable?

- (c) The set of all bounded subsets of \mathbb{Z} .
- (d) The set of all bounded subsets of \mathbb{Q} .

Solution:

- (a) A countable bounded subset of \mathbb{R} : Any finite subset of \mathbb{R} , is countable and will have a minimum and maximum.
- (b) An uncountable bounded subset of \mathbb{R} :

$$S = [0, 1].$$

This set is bounded below by 0 and above by 1. It is uncountable by Cantor's diagonal argument.

(c) The set of all bounded subsets of \mathbb{Z} is countable.

A bounded subset of \mathbb{Z} means a set of integers that lies between some lower bound l and upper bound u. If $S \subseteq \mathbb{Z}$ has bounds $l, u \in \mathbb{R}$, then

$$S \subseteq [[l], |u|] \cap \mathbb{Z}.$$

Hence S is contained in some finite interval of integers.

The power set of a finite set is finite (hence countable). Since there are only countably many choices for the integer bounds l, u, the collection of all bounded subsets of \mathbb{Z} is a countable union of finite sets, which is countable.

Therefore, the set of all bounded subsets of \mathbb{Z} is countable.

(d) The set of all bounded of \mathbb{Q} .

Uncountable. Let B denote the set of all bounded subsets of \mathbb{Q} . Define $f: \mathbb{R} \to B$ as follows: If $x \in \mathbb{Q}$, set $f(x) = \{x\}$. If $x \in \mathbb{R} \setminus \mathbb{Q}$, let $a = \lfloor x \rfloor$. Then $x - a \in [0, 1)$ has infinite decimal expansion $0.d_1d_2d_3\ldots$ Define

$$f(x) = \{a, a + 0.d_1, a + 0.d_1d_2, a + 0.d_1d_2d_3, \ldots\}.$$

Each f(x) is a bounded subset of \mathbb{Q} , and f is injective. Thus B is uncountable.

9. Provide a diagonalization argument to prove that the set of all infinite bit sequences is uncountable. *Solution:*

Assume S (all infinite bit sequences) is countable. Then there is a bijection

$$f: \mathbb{N} \to S$$
.

Write

$$f(1) = a_{11}, a_{12}, a_{13}, \dots$$

$$f(2) = a_{21}, a_{22}, a_{23}, \dots$$

$$f(3) = a_{31}, a_{32}, a_{33}, \dots$$

$$\vdots$$

$$f(n) = a_{n1}, a_{n2}, a_{n3}, \dots$$

$$\vdots$$

Define the diagonal-complement sequence

$$s = (a'_{11}, a'_{22}, a'_{33}, \dots, a'_{nn}, \dots),$$

where a'_{ij} is the bit complement of a_{ij} .

For each n, the n-th bit of s is $a'_{nn} \neq a_{nn}$, so $s \neq f(n)$ for all n. Hence f is not surjective, a contradiction. Therefore S is uncountable.

1.

Consider the set $S = \{a + b\sqrt{7} \mid a, b \in \mathbb{Z}\}$. Prove that $\mathbb{R} - S$ is uncountable.

Note that S is countable, since $f: \mathbb{Z} \times \mathbb{Z} \to S$ is a bijection. Assume that $\mathbb{R} - S$ is countable, then $(\mathbb{R} - S) \cup S = \mathbb{R}$ is countable, since it will be the union of two countable sets. However, \mathbb{R} is uncountable and therefore our assumption is wrong.

By the same logic, for any countable set S, $\mathbb{R} - S$ is uncountable.

2.

Provide an explicit bijection between $\mathbb N$ and $\mathbb N \times \mathbb N$. It should not be an exhaustive enumeration.

Think about the exhaustive enumeration method where you tried to enumerate all the coordinates in a diagonal scheme.

For a natural number *N*, try to find out how many diagonals can be completely enumerated.

```
First diagonal enumerates (1, 1) : 1 point Second diagonal enumerates (2, 1) and (1, 2) : 2 points
```

```
Third diagonal enumerates (3, 1), (2, 2) and (1, 3) : 3 points nth diagonal enumerates (n, 1), (n - 1, 2) .... (1, n) : n points
```

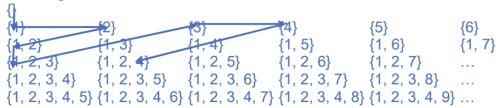
```
This is the maximum n such that \frac{n(n+1)}{2} \le N. Find this n. Let d = N - n [d = 0] The mapping is given by N \to (1, n) [0 < d \le n+1] The mapping is given by N \to (n+1-(d-1), 1+(d-1)) = (n-d+2, d)
```

Determine whether the following sets are countable or uncountable:

a) The set of all finite subsets of N

Countable

Let this set be A. We find a way to enumerate all the finite subsets of $\mathbb N$ using the following enumeration scheme



Alternate Method: We also know that a countable union of countable sets is countable. The above set can be written as $S = S_0 \cup S_1 \cup S_2 \cup S_3 \cup ... \cup S_n \cup ...$ where $S_i \subseteq \mathbb{N}^i$. Each of \mathbb{N}^i is countable.

b) The set of all infinite subsets of N

Uncountable

Let this set be B. Assume that B is countable, then $A \cup B$ is also countable, since it is a union of a countable number of countable sets. But $A \cup B$ is the number of subsets of $\mathbb N$ which is obviously uncountable. Therefore, our assumption is wrong and B is uncountable.

4.

Infinite Bit Sequences] As the name suggests, an infinite bit sequence is an infinite sequence of 0s and 1s. Denote S as the set of all infinite bit sequences. Let $\alpha(n)$ be the nth element of an infinite bit sequence $\alpha \in S$. Determine whether the following sets are countable or uncountable:

a) S

Uncountable

A simple diagonalization argument would suffice. Construct an infinite bite sequence β such that $\beta(n) = \overline{\alpha_n(n)}$, where α_n denotes the α which is mapped to integer $n \in \mathbb{N}$. Clearly, $\beta \in S$. Let $\beta = \alpha_k$ for some $k \in \mathbb{N}$. But $\beta(k) \neq \alpha_k(k)$ by virtue of the above construction. Hence S is uncountable

b) $T_1 = \{ \alpha \in S \mid \alpha(n) = 1 \text{ and } \alpha(n+1) = 0 \text{ for some } n \ge 0 \}$

Consider the set $T_3 = \{\alpha \in S \mid \alpha(0) = 1 \text{ and } \alpha(1) = 0\}$. We have $T_3 \subseteq T_1$, and so $|T_3| \le |T_1| \le |S|$ (use the canonical inclusion maps which are injective). On the other hand, take any $\alpha = (1, 0, a_2, a_3, ..., a_n, ...,) \in T_3$. The map taking $\alpha \rightarrow$ $(a_2, a_3, a_4, \ldots, a_{n+2}, \ldots) \in S$ is clearly a bijection $T_3 \to S$, implying that $|T_3| = |S|$.

c) $T_2 = \{ \alpha \in S \mid \alpha(n) = 1 \text{ and } \alpha(n+1) = 0 \text{ for } \underline{\text{no}} \ n \ge 0 \}$

Countable

Each sequence of T_2 is of the format 0000....00001111... or 0000... Consider the bijective map $f: T_2 \to \mathbb{N}$ such that f(0000...) = 1

and for all other sequences $\alpha \in T_2$, $f(\alpha) = n + 2$, where n is the number of zeros.

5.

[Sets of Functions] We have the following sets, determine whether they are countable or uncountable.

a) The set of all functions from \mathbb{N} to $\{1, 2\}$

Uncountable

Assume that this set (S) is countable. Therefore, there is a bijective mapping $f : \mathbb{N} \to S$ such that $a \in \mathbb{N} \to f_a \in S$. Consider the following diagonalization argument:

	f_1	f_2	f_3	f_4	 	f_n	 		
1	1	2	2	1	 	2	 		
2	1	1	2	1	 	1	 		
3	2	2	1	2	 	2	 		
4	1	1	1	2	 	1	 		
			_	_					
n	2	1	2	2	 	1	 		

Consider a function F which gives outputs opposite of those given by f_i across the diagonal above.

$$F(x) = \begin{cases} 1, f_x(x) = 2 \\ 2, f_x(x) = 1 \end{cases} \quad \forall x \in \mathbb{N}$$

 $F \in S$. However, this means that $F = f_k$ for some k. But, if $f_k(k) = 1$, then F(k) = 2. Hence our assumption is invalid.

b) The set of all functions from \mathbb{N} to \mathbb{N}

<u>Uncountable</u>, any superset of an uncountable set is also uncountable. Alternatively, the above diagonalization argument can be modified to prove this statement by selecting $F(x) = f_x(x) + 1$.

c) The set of all functions from $\{1,2\}$ to \mathbb{N}

<u>Countable</u>, notice that this set will have the same cardinality as $\mathbb{N} \times \mathbb{N}$. Let this set be S. Each $f \in S$ has two values f(1) and f(2), both of which are in \mathbb{N} .

d) The set of all non-increasing functions from $\mathbb N$ to $\mathbb N$

<u>Countable</u>, this set is the countable union of countable sets. Let this set be denoted by S. Let $f \in S$. Then:

$$f(1) \ge f(2) \ge f(3) \ge \cdots$$

Eventually, $\forall f \in S$, there exist values i and n_0 such that $\forall n \geq n_o[f(n) = i]$. Mathematically,

$$\exists n_0 \exists i \ (\forall n \ge n_o) [f(n) = i]$$

For a fixed (n_o, i) pair, let $F_{\{n_o, i\}}$ be the set of non-increasing functions such that $(\forall n \ge n_o)[f(n) = i]$.

Let $g \in F_{\{n_0,i\}}$. We map g to the ordered (i-1)-tuple

$$\{g(1), g(2), ..., g(i-1)\}$$

Notice that this map is a bijection subject to the co-domain satisfying the conditions $g(j) \ge g(j+1)$ and $g(i-1) \ge i$.

The cardinality of the set [g(1), g(2), ..., g(i-1)] is bounded by $|\mathbb{R}^{i-1}|$ and therefore by $|\mathbb{R}|$.

By the Cantor-Schroder-Bernstein theorem, $F_{\{n_0,i\}}$ is countable. Hence

$$S = \bigcup_{n_0} \bigcup_i F_{\{n_0, i\}}$$

is also countable.