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Tutorial 4 Practice Solutions
Discrete Mathematics

\ Countable and Uncountable Sets \

1. Let A and B be uncountable sets with A C B. Prove or disprove: A and B are equinumerous.
Solution:

The statement is false. An uncountable subset of an uncountable set need not be equinumerous with
the larger set.

Counterexample: Let B = P(R) and A = {{z} | z € R}.

(a) A C B: each {x} is a subset of R, hence an element of P(R).
(b) Aisuncountable: the map f : R — A, f(x) = {z} is a bijection, so |[A| = |R| =¢.
(c) Bisuncountable: |B| = |P(R)| = 2°.

Comparison:

|A| = ¢, |B| = 2°, ¢ < 2° (Cantor’s Theorem).

Thus |A| # |B|, so A and B are not equinumerous.

2. Let A be an uncountable set and B a countably infinite subset of A. Prove or disprove: A is
equinumerous with A \ B.
Solution:

The statement is true. If A is uncountable and B C A is countably infinite, then A is equinumerous
with A\ B.

Construction: Since A is uncountable and B is countable, A \ B is uncountable. In particular, it
contains a countably infinite subset C'. Write

B = {b1,by,b3,...}, C={c,co,c3,...} CTA\B.
Define f : A — A\ B by

f(bn) = can—1, f(en) = can, flz) =z forz € A\ (BUC).

Verification:

(a) Codomain: Every image lies in A \ B, since no b,, remains in the image.
(b) Injective: Images of B, odd-indexed C, and A \ (B U C) are disjoint, so no collisions occur.
(c) Surjective:
e Ify e (A\ B)\C,then f(y) =y.
o If y = cop, then f(c,) = v.
e If y = cop—1, then f(b,) = y.
Thus every element of A \ B is attained.

Conclusion: The function f is a bijection, hence

A=A\ B.

(Equivalently: for any infinite cardinal s, kK + Ry = k.)



3. Prove that the real interval [0, 1) is equinumerous with the unit square [0, 1) x [0, 1).

Solution The sets F = QN [0, 1) and F? are countable. Therefore A = [0,1) —F and B = [0, 1)? —F?
are equinumerous with [0, 1) and [0, 1)2, respectively.

Now, define the map
f :B— A, (0.a1a2a3 ey O.blbgbg c. ) g 0.a1b1a2b2a3b3 e

Clearly, f is injective. Thus,

Bl < 4]

The other inequality |A| < |B] is simpler: map

O.cicacz ... — (0.616203 oy 0.cicocs3 ... )

4. Leta,b,c,d € R with a < band ¢ < d. Show that, [a,b) X [c,d) is equinumerous with [0, 1).
Solution:
Define f : [a,b) — [0, 1) such that

fla)="-2

 b—ua

Define g : [¢,d) — [0, 1) such that

y—c
d—rc

Now, show that f is bijective ( show f is one to one and onto ). Similarly, g is also bijective.
Define h : [a,b) x [c,d] — [0,1)? such that

hz,y) = (f(x),9(y))

9(y) =

Now, show that h is bijective ( show h is one to one and onto ). We have shown that [a, b) X [c,d) is
equinumerous with [0, 1)2.

From 3rd question, we know [0, 1)? is equinumerous with [0, 1)
5. Define a relation ~ on R such that a ~ b if and only if a — b € Q. Answer the following:

(a) Prove that ~ is an equivalence relation.

(b) Is the set R/ ~ of all equivalence classes of ~ countable?

Solution:
(a) We show that ~ is an equivalence relation on R.

- Reflexive: Foralla € R, a —a =0 € Q. Hence a ~ a. - Symmetric: If a ~ b, thena — b € Q.
Thusb—a = —(a—0b) € Q,s0b ~ a. - Transitive: If a ~ band b ~ ¢,thena—b € Qand b—c € Q.
Adding givesa —c=(a—b) + (b—¢) € Q,s0a ~ c.

Therefore ~ is an equivalence relation.
(b) Consider the set R/ ~ of equivalence classes.

Forz € R,

2] ={yeR:y-2€Q}={z+q:¢€Q}.
The map ¢ — x + ¢ is a bijection Q — [z], so each equivalence class [z] is countable.

The distinct equivalence classes correspond to distinct cosets of Q in R. If [z] = [y], then z — y € Q;
if [z] # [y], then  — y ¢ Q. Thus R/ ~ has as many elements as R/Q, which is uncountable.

Hence each class is countable, but the set of all equivalence classes R/ ~ is uncountable.



6. Let Z[x] denote the set of all univariate polynomials with integer coefficients.

Answer the following:

(a) Prove that Z[x] is countable.
Solution Z[z] is the countable union of {0} and Zg4[x] for d € Ny, where Zy[z] is the set of all
univariate polynomials with integer coefficients and degree exactly equal to d. Such a polynomial
can be written as

adcxd + ad_lxd_l + -4 agazQ + a1z + ag,
with a; € Z and ag # 0. Since each a; has countably many possibilities, and there are only

finitely many coefficients (d + 1 of them), each Z,[x] is countable.

(b) A real or complex number a is called algebraic if f(a) = 0 for some non-zero f(x) € Z[z]. Let
A denote the set of all algebraic numbers. Prove that A is countable.

Solution There are countably many polynomials in Z[x] \ {0}. Each such polynomial has only
finitely many roots.

(c) Prove that there are uncountably many transcendental (i.e. non-algebraic) numbers.

Solution R is the disjoint union of R N A and the set T of all (real) transcendental numbers. Since
A is countable, so too is R N A. If T is countable, then R is countable too.

7. Let Z|x, y] be the set of all bivariate polynomials with integer coefficients.

Answer the following:

(a) Prove that Z[z, y| is countable.
(b) LetV = {(a, b) € C x C| f(a,b) = 0 for some nonzero f(z,y) € Z[:c,y]}. Is V countable?

Solution:

(a) Z[x,y] is countable.

Any polynomial f(z,y) € Z[z,y] can be written as a finite sum of monomials

f(xv y) = Z a”l,lyj’
where a;; € Z and 7, j € Ny. Each polynomial is thus uniquely represented by a finite set of triples
(aij,i,j) € 7 x Ny x Np.

1. The set A = Z x Ny x Ny is countable since it is a finite product of countable sets. 2. A polynomial
corresponds to a finite sequence of elements of A. The collection of all finite sequences from A can
be written as

S = [j A*
k=1

where AF is the set of k-tuples from A. Each A is countable, and the countable union of countable
sets is countable. 3. Thus, Z[x, y| injects into S, so Z[x, y] is countable.

(b) V is uncountable.
Define

V ={(a,b) e Cx C: f(a,b) = 0 for some nonzero f(z,y) € Z[x,y]}.

1. Since Z[x, y] is countable, we may enumerate its nonzero elements as { f : k € N}. For each f,
define its zero set

Vi = {(a,b) € C*: fy(a,b) =0}.



Then

V= G Vi.
k=1

2. Consider f(z,y) = x — ¢ for some fixed ¢ € Z. Its zero set is

Ve=1{(a,b) €C?:a—c=0}={(c,b): b C}.

This set is in bijection with C, which is uncountable.

3. Since V contains V. as a subset, and V. is uncountable, it follows that V' is uncountable.

. Aset S C Ris called bounded if S has both a lower bound and an upper bound.

Provide examples for the following.

(a) Countable bounded subset of R.
(b) Uncountable bounded subset of R.

Determine whether the following sets are countable/uncountable?
(c) The set of all bounded subsets of Z.
(d) The set of all bounded subsets of Q.

Solution:

(a)

(b)

(©)

(d)

A countable bounded subset of R: Any finite subset of R, is countable and will have a minimum
and maximum.

An uncountable bounded subset of R:
S =10,1].

This set is bounded below by 0 and above by 1. It is uncountable by Cantor’s diagonal argument.

The set of all bounded subsets of Z is countable.

A bounded subset of Z means a set of integers that lies between some lower bound [ and upper
bound u. If S C Z has bounds [, u € R, then

S [, [u]]NZ.

Hence S is contained in some finite interval of integers.

The power set of a finite set is finite (hence countable). Since there are only countably many
choices for the integer bounds /, u, the collection of all bounded subsets of Z is a countable union
of finite sets, which is countable.

Therefore, the set of all bounded subsets of Z is countable.
The set of all bounded of Q.

Uncountable. Let B denote the set of all bounded subsets of Q. Define f : R — B as follows: -
Ifz € Q,set f(x) ={z}. -Iffx € R\ Q,leta = [z]. Then z — a € [0, 1) has infinite decimal
expansion 0.dydads . . .. Define

f(fL‘) = {a, a4+ 0.dy, a+0.dids, a+ 0.dydads, }

Each f(z) is a bounded subset of QQ, and f is injective. Thus B is uncountable.



9. Provide a diagonalization argument to prove that the set of all infinite bit sequences is uncountable.
Solution:

Assume S (all infinite bit sequences) is countable. Then there is a bijection
f:N—=S.
Write

f(l) = Ga11,012,A13, - - .
f<2) = a21,022,093, . . .
f(3) = 31,032,033, .. .

f(n) = Qnl,0n2,an3, .. .

Define the diagonal-complement sequence

/ / ! /
s = (aqy, ag, A335 -+ 5 Qppys - - ),

where a;j is the bit complement of a;;.

For each n, the n-th bit of s is al,,, # ann, s0 s # f(n) for all n. Hence f is not surjective, a
contradiction. Therefore S is uncountable.



Tutorial Solutions
1

Consider the set S = {a + b\7 | a,b € Z}. Prove that R — S is uncountable.

Note that S is countable, since f : Z X Z — S is a bijection. Assume that R — S is countable,
then (R —S) US = Ris countable, since it will be the union of two countable sets. However,
R is uncountable and therefore our assumption is wrong.

By the same logic, for any countable set S, R — S is uncountable.

2.

Provide an explicit bijection between N and N x N. It should not be an exhaustive
enumeration.

Think about the exhaustive enumeration method where you tried to enumerate all the
coordinates in a diagonal scheme.

For a natural number N, try to find out how many diagonals can be completely enumerated.

First diagonal enumerates (1, 1) : 1 point
Second diagonal enumerates (2, 1) and (1, 2) : 2 points

Third diagonal enumerates (3, 1), (2, 2) and (1, 3) : 3 points
nth diagonal enumerates (n, 1), (n — 1, 2) .... (1,n) :n points

This is the maximum n such that @ < N.Findthisn.Letd =N —n

[d = 0] The mapping is given by N = (1,n)
[0 <d <n+1] The mappingis givenby N - (n+1—-(d—1),1+(d—-1)) =(n—d +2,d)



3.

Determine whether the following sets are countable or uncountable:
a) The set of all finite subsets of N
Countable
Let this set be A. We find a way to enumerate all the finite subsets of N using the
following enumeration scheme

{5} {6}

, ; {1, 5} {1, 6} {1.7}
o 1,2, 1,2,5) {1,2,6} {1,2,7} .
(1,2,3,4y {1,2,3,5} {1,2,3,6) {1,2,3,7} {1,2,3,8 ..
{1,2,3,4,5/{1,2,3,4,6}{1,2,3,4,7}{1,2,3,4,8 {1,2,3,4,9} ...

Alternate Method: We also know that a countable union of countable sets is
countable. The above set can be writtenas § = 5, US; US; US; U ..U S, U ... where
S; € N'. Each of N' is countable.

b) The set of all infinite subsets of N
Uncountable
Let this set be B. Assume that B is countable, then A U B is also countable, since it is
a union of a countable number of countable sets. But A U B is the number of subsets
of N which is obviously uncountable. Therefore, our assumption is wrong and B is
uncountable.

Infinite Bit Sequences] As the name suggests, an infinite bit sequence is an infinite
sequence of Os and 1s. Denote S as the set of all infinite bit sequences. Let a(n) be the nth
element of an infinite bit sequence a € S. Determine whether the following sets are
countable or uncountable:
a) S
Uncountable
A simple diagonalization argument would suffice. Construct an infinite bite sequence
B such that B(n) = a,(n), where a,, denotes the a which is mapped to integer n € N.
Clearly, g € S. Let § = a,, for some k € N. But B(k) # a; (k) by virtue of the above
construction. Hence S is uncountable

b) T, ={a€S|a(n)=1and a(n+ 1) = 0 for some n > 0}
Uncountable
Considerthe set T; = {a € S| (0) = 1and a(1) = 0}. We have T3 < T1, and so
|T5;| < |Ty| <|S| (use the canonical inclusion maps which are injective).
On the other hand, take any a = (1,0, a,,as, ..., a,, ..., ) € T3. The map taking a —
(a,, az, ay, ...,Qn4s,...) € S is clearly a bijection T; — S, implying that |T;| = |S].

c) ,={ea€S|a(n)=1and a(n+ 1) =0 fornon = 0}
Countable
Each sequence of T; is of the format 0000....00001111... or 0000...
Consider the bijective map f : T, - N such that £(0000.....) =1

and for all other sequences a € T,, f (a) = n + 2, where n is the number of zeros.



5.

[Sets of Functions] We have the following sets, determine whether they are countable or
uncountable.

a) The set of all functions from N to {1, 2}

Uncountable

Assume that this set (S) is countable. Therefore, there is a bijective mapping f : N - S
such thata € N - f, € S. Consider the following diagonalization argument:

i 2 s A - S
1 1 2 2 1 2
2 1 1 2 1 1
3 2 2 1 2 2
4 1 1 1 2 1
n 2 1 2 2 1

Consider a function F which gives outputs opposite of those given by f; across the
diagonal above.
1,f() =2

F(x):{z ) =1

Vx €N

F € S. However, this means that F = f;, for some k. But, if f, (k) = 1, then F(k) = 2.
Hence our assumption is invalid.

b) The set of all functions from N to N
Uncountable, any superset of an uncountable set is also uncountable. Alternatively, the

above diagonalization argument can be modified to prove this statement by selecting
F(x) = fi(x) + 1.

c) The set of all functions from {1,2} to N
Countable, notice that this set will have the same cardinality as N x N. Let this set be S.
Each f € S has two values f(1) and f(2), both of which are in N.



d) The set of all non-increasing functions from N to N
Countable, this set is the countable union of countable sets. Let this set be denoted
by S.Letf €S. Then:

f=2f2)=f@B) =
Eventually, Vf € S, there exist values i and n, such that vn = n,[f(n) = i].
Mathematically,

Any3i (Vn = ny)[f(n) =i]

For a fixed (n,, i) pair, let Fg, ;; be the set of non-increasing functions such that (vn >

no)[f(n) =i].

Let g € Fg,, ;- We map g to the ordered (i — 1)-tuple

{9(1),9(2),..,9(i-1)}

Notice that this map is a bijection subject to the co-domain satisfying the conditions
g)=g@(+andg(i—1)=>i. '

The cardinality of the set [g(1), g(2), ..., g(i — 1)] is bounded by |R""*| and therefore
by |R|.

By the Cantor-Schroder-Bernstein theorem, Fy,, ; is countable. Hence

§= U U Fnoty
i

No

is also countable.



