
CS21201 Discrete Structures
Practice Problems Solutions

Recurrence Relations

Q1. Solve the recurrence relation: a0 = 1, a1 = 2, and an = 2a3
n≠1

a2
n≠2

for n Ø 2.

Solution 1: The solution provided utilizes a transformation bn = log2 an which yields
the linear recurrence:

bn = 3bn≠1 ≠ 2bn≠2 + 1 with b0 = 0, b1 = 1

– Homogeneous Solution b(h)
n : The characteristic equation is r2 ≠ 3r + 2 = 0, with roots

r1 = 1 and r2 = 2.
b(h)

n = A1(1)n + A2(2)n = A1 + A22n

– Particular Solution b(p)
n :

b(p)
n = nU1n = Un

From the recurrence, we get Un = 3u(n ≠ 1) ≠ 2U(n ≠ 2) + 1 ∆ U = ≠1
– General Solution: bn = b(h)

n + b(p)
n = A1 + A22n ≠ n. Applying initial conditions b0 = 0

and b1 = 1 gives A1 = ≠2 and A2 = 2.

bn = ≠2 + 2 · 2n ≠ n = 2n+1 ≠ n ≠ 2

The original sequence an is 2bn .

an = 22n+1≠n≠2 for n Ø 0

Q2. For n Ø 0, let S = {1, 2, 3, . . . , n} (when n = 0, S = ÿ), and let an denote the number
of subsets of S that contain no consecutive integers. Find and solve a recurrence relation
for an.
Solution 2: The initial conditions are a0 = 1 (only ÿ), a1 = 2 (ÿ, {1}), a2 = 3
(ÿ, {1}, {2}), a3 = 5 (ÿ, {1}, {2}, {3}, {1, 3}).
For n Ø 2, a valid subset A ™ S = {1, . . . , n} either:

– (a) n œ A: When this happens n ≠ 1 /œ A and A \ {n} would be counted in an≠2
subsets.

– (b) n /œ A: For this case A would be counted in an≠1 .

Recurrence Relation: an = an≠1 +an≠2 for n Ø 2, with initial conditions a0 = 1 and a1 = 2.
This is the Fibonacci sequence shifted, where an = Fn+2 (using the convention F1 =
1, F2 = 1, F3 = 2, . . . ).

an = 1Ô
5

S

U
A

1 +
Ô

5
2

Bn+2

≠
A

1 ≠
Ô

5
2

Bn+2T

V for n Ø 0
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Q3. Let � = {0, 1} and A = {0, 01, 011, 1111} ™ �ú. For n Ø 1, let an count the number of
strings in Aú of length n. Find and solve a recurrence relation of an.
Solution 3: The initial values are a1 = 1 (0), a2 = 2 (00, 01), a3 = 4 (000, 001, 010, 011),
and a4 = 9.
For n Ø 5, a string of length n must end in a string from A.

an = an≠1 + an≠2 + an≠3 + 2an≠4 for n Ø 5

– Characteristic Equation: r4≠r3≠r2≠r≠2 = 0. This factors as (r≠2)(r+1)(r2+1) = 0.

– Characteristic Roots: 2, ≠1, and ±i (which give cos(nfi/2) and sin(nfi/2) terms).
– General Solution: an = c1(2)n + c2(≠1)n + c3 cos

1
nfi
2

2
+ c4 sin

1
nfi
2

2
.

– Final Solution (after solving the system for c1, c2, c3, c4):

an = 8
15(2n) + 1

6(≠1)n + 3
10 cos

3
nfi

2

4
+ 1

10 sin
3

nfi

2

4
for n Ø 1

Q4. Solve the recurrence relation an ≠ 3an≠1 = 5(7n), where n Ø 1 and a0 = 2.
Solution 4:

– Homogeneous Solution a(h)
n : The characteristic equation is r ≠ 3 = 0, so r = 3.

a(h)
n = c(3n)

– Particular Solution a(p)
n : Since the forcing function is f(n) = 5(7n) and 7 is not a

characteristic root, we seek a particular solution a(p)
n = A(7n). Substituting this into

the recurrence:
A(7n) ≠ 3A(7n≠1) = 5(7n)

Dividing by 7n≠1 gives: 7A ≠ 3A = 5(7), so 4A = 35, which means A = 35
4 .

a(p)
n = 35

4 7n = 5
47n+1

– General Solution: an = c(3n) + 5
47n+1.

– Applying Initial Condition (a0 = 2): 2 = c(30) + 5
471 ∆ 2 = c + 35

4 ∆ c = 2 ≠ 35
4 =

8≠35
4 = ≠27

4 .
– Final Solution:

an = 5
47n+1 ≠ 27

4 3n = 5
47n+1 ≠ 1

43n+3 for n Ø 0

Q5. Pauline takes out a loan of S dollars that is to be paid back in T periods of time. If r is
the interest rate per period for the loan, what (constant) payment Pauline must make at
the end of each period?
Solution 5: Let an be the amount still owed on the loan at the end of the n-th period
(following the n-th payment). The amount owed after the (n+1)-th period is the previous
balance plus accrued interest minus the payment P (the payment she made at the end of
the (n+1)st period) .
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Recurrence Relation:

an+1 = an + ran ≠ P = (1 + r)an ≠ P 0 Æ n Æ T ≠ 1

Initial Conditions: a0 = S (initial loan amount) and aT = 0 (loan is fully repaid).

– Homogeneous Solution a(h)
n : a(h)

n = c(1 + r)n.
– Particular Solution: a(p)

n = A since no constant is a solution of the associated homoge-
neous relation. A = (1 + r)A ≠ P ∆ A ≠ (1 + r)A = ≠P ∆ ≠rA = ≠P ∆ A = P/r.

a(p)
n = P

r

– General Solution: an = c(1 + r)n + P
r . Using a0 = S: S = c(1 + r)0 + P/r ∆ c =

S ≠ P/r.
an =

3
S ≠ P

r

4
(1 + r)n + P

r

– Solving for P (using aT = 0):

0 =
3

S ≠ P

r

4
(1 + r)T + P

r

≠P

r
=

3
S ≠ P

r

4
(1 + r)T

P

r

Ë
(1 + r)T ≠ 1

È
= S(1 + r)T

Final Payment Formula:

P = (Sr) (1 + r)T

(1 + r)T ≠ 1 = (Sr)
Ë
1 ≠ (1 + r)≠T

È≠1

Q6. Determine the number of n-digit quaternary ({0, 1, 2, 3}) sequences in which there is never
a 3 anywhere to the right of a 0.
Solution 6: Let an be the count of such sequences of length n.
A valid sequence of length n + 1 either:

– (i) Ends in 0, 1, or 2 (3 possibilities): The first n symbols must form a valid sequence,
counted by 3an.

– (ii) Ends in 3: The first n symbols must not contain any 0’s. These are sequences
of length n over {1, 2, 3}, and there are 3n such sequences.

Recurrence Relation: an+1 = 3an + 3n, with a0 = 1 (for ‘).

– Homogeneous Solution a(h)
n : a(h)

n = A3n.
– Particular Solution a(p)

n : Since 3 is a root, we seek a(p)
n = Bn3n. Substituting into

an+1 = 3an + 3n:
B(n + 1)3n+1 = 3(Bn3n) + 3n

Dividing by 3n gives 3B(n + 1) = 3Bn + 1 ∆ 3Bn + 3B = 3Bn + 1 ∆ 3B = 1 ∆
B = 1

3 .
a(p)

n = 1
3n3n = n3n≠1

3



– General Solution: an = A3n + n3n≠1. Using a0 = 1: 1 = A30 + 0 ∆ A = 1.
– Final Solution:

an = 3n + n3n≠1 for n Ø 0

Q7. Let � = {0, 1, 2, 3}. For n Ø 1, let an count the number of strings in �n containing an
odd number of 1’s. Find and solve a recurrence relation for an.
Solution 7: For n Ø 2, consider the n-th symbol:

– (i) n-th symbol is 0, 2, or 3 (3 ways): The prefix of length n ≠ 1 must have an odd
number of 1’s, counted by 3an≠1.

– (ii) n-th symbol is 1 (1 way): The prefix of length n ≠ 1 must have an even number
of 1’s. The total number of strings of length n ≠ 1 is 4n≠1. The number of strings
with an even number of 1’s is 4n≠1 ≠ an≠1.

Recurrence Relation: an = 3an≠1 +(4n≠1 ≠an≠1) = 2an≠1 +4n≠1 for n Ø 2. Initial Condition:

a1 = 1 (only the string 1).

– Homogeneous Solution a(h)
n : r ≠ 2 = 0 ∆ r = 2. a(h)

n = c(2n).
– Particular Solution a(p)

n : We seek a(p)
n = A4n≠1. Substituting into the recurrence:

A4n≠1 = 2(A4n≠2) + 4n≠1

Multiplying by 4 and dividing by 4n≠1: 4A = 2A + 4 ∆ 2A = 4 ∆ A = 2.

a(p)
n = 2 · 4n≠1

– General Solution: an = c(2n) + 2(4n≠1). Using a1 = 1: 1 = c(21) + 2(40) ∆ 1 =
2c + 2 ∆ 2c = ≠1 ∆ c = ≠1

2 .
– Final Solution:

an = ≠1
2(2n) + 2(4n≠1) = ≠1

22n + 2
44n = 1

24n ≠ 1
22n for n Ø 1

Q8. Find an explicit formula for the sequences defined by this recurrence relation: Xn =
2Xn≠1 + 15Xn≠2 + 2n, X1 = 2, X2 = 4.
Solution 8:

– Homogeneous Solution X(h)
n : Characteristic equation r2 ≠ 2r ≠ 15 = 0, which factors

as (r ≠ 5)(r + 3) = 0. Roots are r1 = 5 and r2 = ≠3.

X(h)
n = C1(5n) + C2(≠3)n

– Particular Solution X(p)
n : Since 2 is not a characteristic root, we seek X(p)

n = A2n.
Substituting into the recurrence:

A2n = 2(A2n≠1) + 15(A2n≠2) + 2n

Dividing by 2n≠2 gives 4A = 4A + 15A + 4 ∆ 15A = ≠4 ∆ A = ≠ 4
15 .

X(p)
n = ≠ 4

152n

– General Solution: Xn = C15n + C2(≠3)n ≠ 4
152n.
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– Applying Initial Conditions:

X1 = 2 =∆ 2 = 5C1 ≠ 3C2 ≠ 8
15

X2 = 4 =∆ 4 = 25C1 + 9C2 ≠ 16
15

Solving this system yields C1 = 19
60 and C2 = ≠19

60 .
– Final Solution:

Xn = 19
605n ≠ 19

60(≠3)n ≠ 4
152n = ≠4 · 2n

15 ≠ (≠1)n19 · 3n

60 + 19 · 5n

60

Q9. Find and solve a recurrence relation for the number of ways to park motorcycles and
compact cars in a row of n spaces if each cycle requires one space and each compact needs
two. (All motorcycles are identical in appearance, as are the cars, and we want to use up
all the n spaces)
Solution 9: Let an be the number of ways to tile n spaces. Consider the last space:

– (i) If the last space is occupied by a motorcycle (1 space), the preceding n≠1 spaces
must be fully filled in an≠1 ways.

– (ii) If the last space is occupied by a compact car (2 spaces), the preceding n ≠ 2
spaces must be fully filled in an≠2 ways.

Recurrence Relation: an = an≠1 + an≠2 for n Ø 2. Initial Conditions: a0 = 1 (empty lot,
one way to be filled by zero vehicles) and a1 = 1 (one motorcycle).

– This is the standard Fibonacci sequence with an = Fn+1. The characteristic equation
is r2 ≠ r ≠ 1 = 0, with roots r1,2 = 1±

Ô
5

2 .
– Final Solution :

an = 1Ô
5

S

U
A

1 +
Ô

5
2

Bn+1

≠
A

1 ≠
Ô

5
2

Bn+1T

V

Q10. Let an, n Ø 0 be the count of strings over {0, 1, 2} containing no consecutive 1’s and no
consecutive 2’s. Find a recurrence relation for an and solve it.
Solution 10: Let bn, cn, dn denote the counts of the strings of length n that start with
0, 1, 2, respectively. Let us also take b0 = 1, c0 = 0 and d0 = 0 Let an = bn + cn + dn for
all n Ø 0.

– bn = an≠1 for all n Ø 1 (A string starting with 0 can be followed by any valid string
of length n ≠ 1).

– cn = bn≠1 + dn≠1 = an≠1 ≠ cn≠1 for all n Ø 1 (Starts with 1, must be followed by 0
or 2).

– dn = bn≠1 + cn≠1 = an≠1 ≠ dn≠1 for all n Ø 1 (Starts with 2, must be followed by 0
or 1).

Adding the three equations: an = bn + cn + dn:

an = 3an≠1 ≠ (cn≠1 + dn≠1) = 3an≠1 ≠ (an≠1 ≠ bn≠1) = 2an≠1 + bn≠1 = 2an≠1 + an≠2

for all n Ø 2
Initial Conditions: a0 = 1 (‘) and a1 = 3 (0, 1, 2).
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– Characteristic equation r2 ≠ 2r ≠ 1 = 0, with roots r1,2 = 1 ±
Ô

2.

an = A(1 +
Ô

2)n + B(1 ≠
Ô

2)n

– Final Solution (after applying a0 = 1, a1 = 3): A = 1+
Ô

2
2 and B = 1≠

Ô
2

2 .

an = 1
2

Ë
(1 +

Ô
2)n+1 + (1 ≠

Ô
2)n+1

È
for n Ø 0

Q11. You start with a chocolate bar of size 1 ◊ 10100. In each operation, choose a break point
uniformly at random among the integer positions, split the bar, keep the left piece and
discard the right. Continue until a 1 ◊ 1 piece remains. What is the probability that at
some point the left piece has size 1 ◊ 141421356237? (More generally, for a target size
k Ø 1 what is the probability of ever seeing size k?)
Solution 11: Let P (L) be the probability that, starting with a bar of length L, the
process ever results in a left piece of size k.

– Base Cases: P (k) = 1 and P (L) = 0 for L < k.
– Recurrence (L > k): The first break point is uniform in {1, . . . , L ≠ 1},and only first

pieces of length Ø k can still reach k.

P (L) = 1
L ≠ 1

L≠1ÿ

i=k

P (i)

Let S(L) = qL
i=k P (i) be the cumulative sum. The recurrence can be rewritten as:

P (L) = S(L ≠ 1)
L ≠ 1 (L > k)

Then S(L) = S(L ≠ 1) + P (L) = S(L ≠ 1) + S(L≠1)
L≠1 = S(L ≠ 1)

1
1 + 1

L≠1

2
=

L
L≠1S(L ≠ 1). This relation telescopes to S(L) = L

L≠1 · L≠1
L≠2 · · · k+1

k S(k) = L
k S(k).

Since S(k) = P (k) = 1, we have S(L) = L/k. The probability P (L) is found by
P (L) = S(L) ≠ S(L ≠ 1):

P (L) = L

k
≠ L ≠ 1

k
= 1

k
for L Ø k

The probability of ever seeing the target size k = 141421356237 is:

1
141421356237
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CS21201 Discrete Structures
Tutorial Solutions

Recurrence Relations

Q1. Find a recurrence relation for the number of binary sequences of length n that have no consecutive

0s.

Solution: For n Ø 1 let an be the number of such sequences of length n. Let a(0)
n count those

that end in 0, and a(1)
n those that end in 1. Then an = a(0)

n + a(1)
n .

If a sequence x of length n ≠ 1 ends in 1 (counted by a(1)
n≠1), we can append 0 or 1, contributing

2 · a(1)
n≠1 to an. If x ends in 0 (counted by a(0)

n≠1), we can only append 1, contributing 1 · a(0)
n≠1 to

an. Thus, we have: an = 2a(1)
n≠1 + a(0)

n≠1.

Since an≠2 = a(1)
n≠1 (a sequence of length n ≠ 2 is followed by 1 to create a sequence counted by

a(1)
n≠1), we can substitute and simplify:

an = a(1)
n≠1 + [a(1)

n≠1 + a(0)
n≠1] = a(1)

n≠1 + an≠1 = an≠1 + an≠2

The recurrence relation is an = an≠1 + an≠2, for n Ø 3, with initial conditions a1 = 2 and a2 = 3.

(The sequences are 0, 1 for n = 1 and 01, 10, 11 for n = 2).

Q2. A string of decimal digits is considered to be a valid codeword if it contains an even number of

0 digits. For example, 02310023089 and 7254193776 are valid codewords, but 060796007620 is

not valid. Let cn denote the number of valid n-digit codewords.

(a) Derive, with clear justifications, a recurrence relation for cn. Also supply the required

number of initial conditions.

(b) Solve the recurrence relation of Part (a) to obtain a closed-form expression for cn.

Solution: The initial condition is c0 = 1 (the empty string contains zero, an even number of 0

digits).

For n Ø 1, a valid codeword W of length n can be obtained in two mutually exclusive ways:

(a) W starts with 0. The remaining n ≠ 1 digits must form an invalid codeword (containing an

odd number of 0s). The total number of n ≠ 1 digit strings is 10
n≠1

, and cn≠1 of them are

valid. Thus, the count is 10
n≠1 ≠ cn≠1.

(b) W starts with a digit other than 0 (9 possibilities). The remaining n ≠ 1 digits must form

a valid codeword. The count is therefore 9cn≠1.

Summing these counts gives the recurrence relation:

cn = (10
n≠1 ≠ cn≠1) + 9cn≠1 = 8cn≠1 + 10

n≠1

Q3. Solve the recurrence relation: an = nan≠1 + n(n ≠ 1)an≠2 + n! for n Ø 2, with a0 = 0, a1 = 1.

Solution: Dividing both sides of the given recurrence by n!, we get:

an

n!
=

nan≠1
n!

+
n(n ≠ 1)an≠2

n!
+

n!

n!

1



an

n!
=

an≠1
(n ≠ 1)!

+
an≠2

(n ≠ 2)!
+ 1

Let bn =
an
n! . We have the new recurrence relation:

bn = bn≠1 + bn≠2 + 1

The initial conditions become b0 =
a0
0! =

0
1 = 0, and b1 =

a1
1! =

1
1 = 1.

Homogeneous Solution: b(h)
n = A1

A
1 +

Ô
5

2

Bn

+A2

A
1 ≠

Ô
5

2

Bn

(similar to Fibonacci sequence).

Particular Solution: Assume b(p)
n = U · 1n

= U . From the recurrence, U = U + U + 1 ∆ U = ≠1.

General Solution: bn = b(h)
n + b(p)

n = A1

A
1 +

Ô
5

2

Bn

+ A2

A
1 ≠

Ô
5

2

Bn

≠ 1.

Using the initial conditions b0 = 0 and b1 = 1, we get A1 =
3 +

Ô
5

2
Ô

5
and A2 = ≠3 ≠

Ô
5

2
Ô

5
.

Therefore, bn =
1Ô
5

S

U
A

1 +
Ô

5

2

Bn+2
≠

A
1 ≠

Ô
5

2

Bn+2T

V ≠ 1 for n Ø 0.

Finally, an = n! bn =
n!Ô

5

S

U
A

1 +
Ô

5

2

Bn+2
≠

A
1 ≠

Ô
5

2

Bn+2
≠

Ô
5

T

V.

Q4. An alphabet � consists of four numeric characters 1, 2, 3, 4, and seven alphabetic characters

a, b, c, d, e, f, g. Find and solve a recurrence relation for the number of words of length n (in �
ú
),

where there are no consecutive (identical or distinct) alphabetic characters.

Solution: For n Ø 0 let an count the number of words of length n in � where there are no

consecutive alphabetic characters. Let a(1)
n count those words that end with a numeric character,

while a(2)
n counts those that end with an alphabetic character. Then an = a(1)

n + a(2)
n .

For n Ø 1: an+1 = a(1)
n+1 + a(2)

n+1.

a(1)
n+1 = 4a(1)

n + 4a(2)
n = 4an

a(2)
n+1 = 7a(1)

n

an+1 = 4an + 7a(1)
n = 4an + 7(4an≠1) = 4an + 28an≠1

The initial conditions are a0 = 1 and a1 = 11. Now let an = crn
where c, r ”= 0 and n Ø 0. Then

the resulting characteristic equation is r2 ≠ 4r ≠ 28 = 0, where r =
4±

Ô
128

2 = 2 ± 4
Ô

2.

Hence an = A[2 + 4
Ô

2]
n

+ B[2 ≠ 4
Ô

2]
n
, n Ø 0.

1 = a0 =∆ 1 = A + B, and 11 = a1 =∆ 11 = A[2 + 4
Ô

2] + B[2 ≠ 4
Ô

2].

11 = A[2 + 4

Ô
2] + (1 ≠ A)[2 ≠ 4

Ô
2] = [2 ≠ 4

Ô
2] + A[2 + 4

Ô
2 ≠ 2 + 4

Ô
2] = [2 ≠ 4

Ô
2] + 8

Ô
2A

So A =
9+4

Ô
2

8
Ô

2 , which simplifies to A =
8+9

Ô
2

16 (based on your next line), and B = 1≠A =
8≠9

Ô
2

16 .

Consequently,

an =

C
8 + 9

Ô
2

16

D

[2 + 4

Ô
2]

n
+

C
8 ≠ 9

Ô
2

16

D

[2 ≠ 4

Ô
2]

n, n Ø 0
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Q5. Let an satisfy a1 = 1 and for n Ø 2 the piecewise relation: an = 2an≠1 if n is odd, and

an = 2an≠1 + 1 if n is even. Develop a single recurrence relation for an that holds for both odd

and even n, and solve it.

Solution: For both cases, an ≠ an≠2 = 2(an≠1 ≠ an≠3)

∆ an ≠ 2an≠1 ≠ an≠2 + 2an≠3 = 0

The characteristic equation is r3 ≠ 2r2 ≠ r + 2 = 0, with roots r1 = 2, r2 = 1, and r3 = ≠1.

The general solution is an = “(2)
n

+ —(1)
n

+ –(≠1)
n
.

Using the initial conditions a1 = 1, a2 = 2a1 + 1 = 3, and a3 = 2a2 = 6, and solving for the

constants gives:

– =
1

6
, — = ≠1

2
, “ =

5

6

The closed-form expression for an is:

an =
5

6
· 2

n ≠ 1

2
· 1

n
+

1

6
· (≠1)

n

Which can be written as:

an =
1

6
[5 · 2

n
+ (≠1)

n ≠ 3]

Q6. Consider a 2 ◊ 10 grid in which each cell initially contains a frog. Every frog simultaneously

jumps to one of its edge-adjacent cells, chosen arbitrarily. In how many possible ways can the

jumps occur so that after the jump, each cell again contains exactly one frog? More generally,

answer the question for a 2 ◊ n grid.

Solution: Color the 2 ◊ n board in alternating black and white. Any jump goes from black

to white or from white to black, so the black-squared frogs and the white-squared frogs can be

handled independently. Let fn be the number of valid patterns for one color.

– Recurrence: In the first column, the black frog can jump down (leaving n ≠ 1 columns) or

right (forcing the next black frog to jump left, leaving n ≠ 2 columns).

fn = fn≠1 + fn≠2 (n Ø 3)

– Initial Conditions: f1 = 1 and f2 = 2.

– Result: Since the two colors are independent, the total number of valid simultaneous jump

outcomes on a 2 ◊ n board is f2
n.

– For n = 10: f10 = 89.

– Total Ways: f2
10 = 89

2
= 7921.

Q7. Let S = {1, 2, 3, . . . , 20}. Determine the number of ways to partition S into 10 unordered pairs

such that, in each pair, the absolute di�erence of the two numbers is either 1 or 10.

Solution: Place the numbers S = {1, 2, . . . , 20} in a 2 ◊ n array with n = 10:

A
1 2 3 · · · n

n + 1 n + 2 n + 3 · · · 2n

B

An allowed pair is either a horizontal neighbor (di�erence 1) or a vertical neighbor (di�erence

n = 10). Thus, a valid pairing of all 2n numbers corresponds exactly to a tiling of the 2 ◊ n
board by 2 ◊ 1 dominoes.
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– Recurrence: Let T (n) be the number of domino tilings of a 2 ◊ n board.

T (n) = T (n ≠ 1) + T (n ≠ 2) (n Ø 3)

– Initial Conditions: T (1) = 1 and T (2) = 2.

– Result: T (n) are the Fibonacci numbers Fn (where F1 = 1, F2 = 2).

– Final Answer: The number of required pairings for n = 10 is T (10) = F10 = 89.

4


