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Abstract Algebraic Structures

Define two operations on Z as:
adb=a+b+u, aGb=a+b+wvab

where u, v are constant integers. For which values of u and v, is (Z,®,®) a ring?

Solution 1: [Additive axioms] is clearly commutative. For associativity, we note that (a®b)®c =
(a+b+u)®c = a+b+c+2u, whereas a® (b c) = a®(b+c+u) = a+b+c+2u, that is, ( (abb)Bc =
a® (b ® c); irrespective of u. The additive identity is u, because a ® (—u) = a + (—u) +u = a
and ( —u)®a = (—u)+a+u=a. Finally, a+ (—2u—a)+u=(—2u—a)+a+u=—u, —2u—a
is the additive inverse of a. In short, the additive axioms do not impose any constraints on
(and v is not involved in this addition).

[Multiplicative axioms] We have (a®b)® ¢ = (a+b+wvab) ©c = a+b+vab+c+v(a+b+vab)c =
a+b+c+v(ab+ac+be+abe), whereas a®(boc) = a®(b+c+vbe) = a+(b+c+vbe)+va(b+c+vbe) =
a+ b+ c+v(ab+ ac+ bc + abc), so is associative for any value of v. Although not needed in
a general ring. this multiplication is commutative and has the identity 0. Again, no conditions
on v (and u) are imposed.

[Distributivity] Because of commutativity, it suffices to look only at a® (b@¢) = (a®b)® (a®¢),
that is, a ® (b+ c+u) = (a + b+ vab) ® (a + ¢+ vac) that is, a+ (b+c+u) +va(b+c+u) =
(a+b+wvab)+ (a+c+wvac)+u, that is, a+b+c+u+vab+vac+uva = 2a+ b+ c+u+vab+wvac;
that is, uva = a. Since this must hold for all integers a, we must have uv = 1.

The only possibilities are therefore u =v=1and u=v = —1.

Take v =1 and v = 1 in Question 1.

(a) Find the units of (Z,®,®) . Find their respective inverses.

(b) Prove that the set of all odd integers is a subring of this ring. What about the set of all
even integers?

Solution 2:

(a) The multiplicative identity is 0. So a ® b = 0 (with a # —1) implies a + b+ ab = 0 that is,
bla+1) = —a, that is, b = —(;{7). This b is an integer if and only if a = 0 or a = —2. The
inverse of 0 is 0, and of —2 is —2.

(b) It suffices to verify that a © b and a ® b are odd if a, b are odd. The additive inverse of b is
—2u—b = —2—b which is odd if a is odd. But then, a®b = a®(—2-b) = a—2—-b+1 = a—b—1
is odd if a, b are odd. Also, a ®b=a+ b+ ab is odd if a, b are odd.

Even integers do not constitute a subring, because closure of ® does not hold.
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Let Z1 be the ring from Question 1 with w = v = 1, and Zo the ring from Question 1 with
u = v = —1. Define a ring isomorphism f : Z; — Zo.

Solution 3: Consider the map f : Z; — Zg as f(a) = —a. Then, f(a®1b) = fla+b+1) =
—(a+0b+1), whereas f(a) @2 f(b) = (—a) &2 (—b) = (—a) + (—b) =1 = —(a+ b+ 1). Moreover,
F(a @) = f(a+b+ab) = —(a+b-+ab), and f(a) © F(b) = (~a) @2 (~b) = (~a) + (=b) —
(—a)(=b) = —(a+ b+ ab).

Let R be a commutative ring with identity, and R[z] be the set of univariate polynomials with
coefficients from R. Define addition and multiplication of polynomials in the usual way. Prove
that R[x] is an integral domain if and only if R is an integral domain.

Solution 4: [=] Take non-zero elements a,b € R. Then a and b are non-zero (constant)
polynomials. Since R[x] is an integral domain, ab is not the zero polynomial. But ab is again
a constant polynomial. It follows that ab # 0. [«+—] Suppose that there exist A(x), B(z) € R|x]
such that A(x)B(z) = 0, A(z) # 0 and B(x) # 0. Write A(z) = ag + a12 + agz® + - - - + agz?
with ag # 0 and d > 0, and B(z) = by + byw + box® + - - - + bez® with b, # 0 and e > 0. Since
A(z)B(x) = 0 we have agb. = 0. This implies that R is not an integral domain.

Prove that Z[v/5] = {a 4+ b\/5 | a,b € Z} is an integral domain.

Solution 5: Closure under subtraction and multiplication is easy to check. Since R is commu-
tative, Z[v/5] is so too. Finally, take a = 1 and b = 0 in the definition to conclude that Z[v/5]
contains the multiplicative identity.

Let G be a (multiplicative) group, and H, K subgroups of G. Prove that H U K is a subgroup
of Gifand only if H C K or K C H.

Solution 6: [If] Obvious.

[Only if] H U K is a subgroup of G. Suppose that H is not contained in K. Then, there exists
h € H such that h ¢ K. Take any k € K. Since h, k are both in HUK and HUK is a subgroup,
we have hk € HUK. Suppose that hk € K. Since k € K we have k! € K, so (hk)k~! = h € K,
a contradiction. Therefore hk € H. But h € H, so h™* € H. and therefore h=1(hk) = k € H.
It follows that K C H.

Let G be the set of all points on the hyperbola zy = 1 along with the point (0, 00) at infinity.

Define the operation:
( 1) < 1) ( ; )
"a b "a+b

Prove that G is an abelian group under this operation.

Solution 7: (a) Closure: For any a,b € R, either a + b # 0 and (a + b, ai%) eG,ora+b=0

and the result is (0,00) € G. Hence G is closed under the operation.
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(b) Associativity: Using the definition of the operation and the associativity of real addition, we
have

((a) = (5)) (o) = (oot = (o0) + () +(+2)

If a + b+ ¢ =0, then both sides equal (0, 00). Thus associativity holds.

(c) Identity: The element e = (0, 00) serves as the identity, since

(o0 ve=(er0.a50) = (o)
a,—|+e=la+0,——|=|a,-
a a+0 a

and similarly e + (a, %) = (a, %)

(d) Inverse: The inverse of (a, %) is (—a, —%) because

<a, i) + (—a, _clz) = (0,00) =e.

(e) Commutativity: Since real addition is commutative,

) () rritg) = rats) - (0) (o)

Thus the operation is commutative.

Hence, G is an abelian group under the given operation.

Define an operation on G = R* x R as:
(a,b) o (c,d) = (ac,bc + d)

Prove that (G, o) is a non-abelian group.

Solution 8: [Closure] since for (a,b), (¢,d) € R* x R we have ( (a,b) o (¢,d) = (ac, be + d) with
ac € R* and bc +d € R.

[Associativity] We have (a,b) o ((¢,d) o (e, f)) = (a,b) o (ce,de + f) = (ace,bce + de + f), and (
(a,b) o (c,d)) o (e, f) = (ac,bc+d) o (e, f) = (ace, bce + de + f).

[Identity] We have (1,0) o (a,b) = (a,b) and (a,b) o (1,0) = (a,b), so (1,0) is the identity in G.
[Inverse] We have (a,b)o (%, —g) = (1,0) and (1, —g)o(a, b) = (1,0). Since a € R*, L is defined.
[

Non-Abelian] We have ( (1,2) o (2,3) = (2,7), whereas (2,3) o (1,2) = (2,5). Hence (G, o) is
non-abelian.




