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Abstract Algebraic Structures

Q1. Define two operations on Z as:

a⊕ b = a + b + u, a⊙ b = a + b + vab

where u, v are constant integers. For which values of u and v, is (Z,⊕,⊙) a ring?

Solution 1: [Additive axioms] is clearly commutative. For associativity, we note that (a⊕b)⊕c =
(a+b+u)⊕c = a+b+c+2u, whereas a⊕(b⊕c) = a⊕(b+c+u) = a+b+c+2u, that is, ( (a⊕b)⊕c =
a ⊕ (b ⊕ c); irrespective of u. The additive identity is u, because a ⊕ (−u) = a + (−u) + u = a
and ( −u)⊕a = (−u) + a + u = a. Finally, a + (−2u−a) + u = (−2u−a) + a + u = −u, −2u−a
is the additive inverse of a. In short, the additive axioms do not impose any constraints on u
(and v is not involved in this addition).
[Multiplicative axioms] We have (a⊙b)⊙c = (a+b+vab)⊙c = a+b+vab+c+v(a+b+vab)c =
a+b+c+v(ab+ac+bc+abc), whereas a⊙(b⊙c) = a⊙(b+c+vbc) = a+(b+c+vbc)+va(b+c+vbc) =
a + b + c + v(ab + ac + bc + abc), so is associative for any value of v. Although not needed in
a general ring. this multiplication is commutative and has the identity 0. Again, no conditions
on v (and u) are imposed.
[Distributivity] Because of commutativity, it suffices to look only at a⊙(b⊕c) = (a⊙b)⊕(a⊙c),
that is, a⊙ (b + c + u) = (a + b + vab)⊕ (a + c + vac) that is, a + (b + c + u) + va(b + c + u) =
(a+b+vab)+(a+c+vac)+u, that is, a+b+c+u+vab+vac+uva = 2a+b+c+u+vab+vac;
that is, uva = a. Since this must hold for all integers a, we must have uv = 1.
The only possibilities are therefore u = v = 1 and u = v = −1.

Q2. Take u = 1 and v = 1 in Question 1.

(a) Find the units of (Z,⊕,⊙) . Find their respective inverses.
(b) Prove that the set of all odd integers is a subring of this ring. What about the set of all

even integers?

Solution 2:

(a) The multiplicative identity is 0. So a⊙ b = 0 (with a ̸= −1) implies a + b + ab = 0 that is,
b(a + 1) = −a, that is, b = −( a

a+1). This b is an integer if and only if a = 0 or a = −2. The
inverse of 0 is 0, and of −2 is −2.

(b) It suffices to verify that a⊖ b and a⊙ b are odd if a, b are odd. The additive inverse of b is
−2u−b = −2−b which is odd if a is odd. But then, a⊕b = a⊕(−2−b) = a−2−b+1 = a−b−1
is odd if a, b are odd. Also, a⊙ b = a + b + ab is odd if a, b are odd.
Even integers do not constitute a subring, because closure of ⊙ does not hold.
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Q3. Let Z1 be the ring from Question 1 with u = v = 1, and Z2 the ring from Question 1 with
u = v = −1. Define a ring isomorphism f : Z1 → Z2.

Solution 3: Consider the map f : Z1 → Z2 as f(a) = −a. Then, f(a ⊕1 b) = f(a + b + 1) =
−(a + b + 1), whereas f(a)⊕2 f(b) = (−a)⊕2 (−b) = (−a) + (−b)− 1 = −(a + b + 1). Moreover,
f(a ⊙1 b) = f(a + b + ab) = −(a + b + ab), and f(a) ⊙2 f(b) = (−a) ⊙2 (−b) = (−a) + (−b) −
(−a)(−b) = −(a + b + ab).

Q4. Let R be a commutative ring with identity, and R[x] be the set of univariate polynomials with
coefficients from R. Define addition and multiplication of polynomials in the usual way. Prove
that R[x] is an integral domain if and only if R is an integral domain.

Solution 4: [⇒] Take non-zero elements a, b ∈ R. Then a and b are non-zero (constant)
polynomials. Since R[x] is an integral domain, ab is not the zero polynomial. But ab is again
a constant polynomial. It follows that ab ̸= 0. [←] Suppose that there exist A(x), B(x) ∈ R[x]
such that A(x)B(x) = 0, A(x) ̸= 0 and B(x) ̸= 0. Write A(x) = a0 + a1x + a2x2 + · · · + adxd

with ad ̸= 0 and d ≥ 0, and B(x) = b0 + b1x + b2x2 + · · · + bexe with be ̸= 0 and e ≥ 0. Since
A(x)B(x) = 0 we have adbe = 0. This implies that R is not an integral domain.

Q5. Prove that Z[
√

5] = {a + b
√

5 | a, b ∈ Z} is an integral domain.

Solution 5: Closure under subtraction and multiplication is easy to check. Since R is commu-
tative, Z[

√
5] is so too. Finally, take a = 1 and b = 0 in the definition to conclude that Z[

√
5]

contains the multiplicative identity.

Q6. Let G be a (multiplicative) group, and H, K subgroups of G. Prove that H ∪K is a subgroup
of G if and only if H ⊆ K or K ⊆ H.

Solution 6: [If] Obvious.
[Only if] H ∪K is a subgroup of G. Suppose that H is not contained in K. Then, there exists
h ∈ H such that h /∈ K. Take any k ∈ K. Since h, k are both in H∪K and H∪K is a subgroup,
we have hk ∈ H∪K. Suppose that hk ∈ K. Since k ∈ K we have k−1 ∈ K, so (hk)k−1 = h ∈ K,
a contradiction. Therefore hk ∈ H. But h ∈ H, so h−1 ∈ H. and therefore h−1(hk) = k ∈ H.
It follows that K ⊆ H.

Q7. Let G be the set of all points on the hyperbola xy = 1 along with the point (0,∞) at infinity.
Define the operation: (

a,
1
a

)
+

(
b,

1
b

)
=

(
a + b,

1
a + b

)
Prove that G is an abelian group under this operation.

Solution 7: (a) Closure: For any a, b ∈ R, either a + b ̸= 0 and
(
a + b, 1

a+b

)
∈ G, or a + b = 0

and the result is (0,∞) ∈ G. Hence G is closed under the operation.
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(b) Associativity: Using the definition of the operation and the associativity of real addition, we
have((

a,
1
a

)
+

(
b,

1
b

))
+

(
c,

1
c

)
=

(
a + b + c,

1
a + b + c

)
=

(
a,

1
a

)
+

((
b,

1
b

)
+

(
c,

1
c

))
.

If a + b + c = 0, then both sides equal (0,∞). Thus associativity holds.
(c) Identity: The element e = (0,∞) serves as the identity, since(

a,
1
a

)
+ e =

(
a + 0,

1
a + 0

)
=

(
a,

1
a

)

and similarly e +
(
a, 1

a

)
=

(
a, 1

a

)
.

(d) Inverse: The inverse of
(
a, 1

a

)
is

(
−a,− 1

a

)
because

(
a,

1
a

)
+

(
−a,−1

a

)
= (0,∞) = e.

(e) Commutativity: Since real addition is commutative,(
a,

1
a

)
+

(
b,

1
b

)
=

(
a + b,

1
a + b

)
=

(
b + a,

1
b + a

)
=

(
b,

1
b

)
+

(
a,

1
a

)
.

Thus the operation is commutative.
Hence, G is an abelian group under the given operation.

Q8. Define an operation on G = R∗ × R as:

(a, b) ◦ (c, d) = (ac, bc + d)

Prove that (G, ◦) is a non-abelian group.

Solution 8: [Closure] since for (a, b), (c, d) ∈ R∗ ×R we have ( (a, b) ◦ (c, d) = (ac, bc + d) with
ac ∈ R∗ and bc + d ∈ R.
[Associativity] We have (a, b) ◦ ((c, d) ◦ (e, f)) = (a, b) ◦ (ce, de + f) = (ace, bce + de + f), and (
(a, b) ◦ (c, d)) ◦ (e, f) = (ac, bc + d) ◦ (e, f) = (ace, bce + de + f).
[Identity] We have (1, 0) ◦ (a, b) = (a, b) and (a, b) ◦ (1, 0) = (a, b), so (1, 0) is the identity in G.
[Inverse] We have (a, b)◦ ( 1

a ,− b
a) = (1, 0) and ( 1

a ,− b
a)◦ (a, b) = (1, 0). Since a ∈ R∗, 1

a is defined.
[Non-Abelian] We have ( (1, 2) ◦ (2, 3) = (2, 7), whereas (2, 3) ◦ (1, 2) = (2, 5). Hence (G, ◦) is
non-abelian.

3


