CS21201 Discrete Structures Solution Sheet

Abstract Algebraic Structures

Q1. Define two operations on \mathbb{Z} as:

$$a \oplus b = a + b + u$$
, $a \odot b = a + b + vab$

where u, v are constant integers. For which values of u and v, is $(\mathbb{Z}, \oplus, \odot)$ a ring?

Solution 1: [Additive axioms] is clearly commutative. For associativity, we note that $(a \oplus b) \oplus c = (a+b+u) \oplus c = a+b+c+2u$, whereas $a \oplus (b \oplus c) = a \oplus (b+c+u) = a+b+c+2u$, that is, $((a \oplus b) \oplus c = a \oplus (b \oplus c)$; irrespective of u. The additive identity is u, because $a \oplus (-u) = a + (-u) + u = a$ and $(-u) \oplus a = (-u) + a + u = a$. Finally, a + (-2u - a) + u = (-2u - a) + a + u = -u, -2u - a is the additive inverse of a. In short, the additive axioms do not impose any constraints on u (and v is not involved in this addition).

[Multiplicative axioms] We have $(a \odot b) \odot c = (a+b+vab) \odot c = a+b+vab+c+v(a+b+vab)c = a+b+c+v(ab+ac+bc+abc)$, whereas $a \odot (b \odot c) = a \odot (b+c+vbc) = a+(b+c+vbc)+va(b+c+vbc) = a+b+c+v(ab+ac+bc+abc)$, so is associative for any value of v. Although not needed in a general ring. this multiplication is commutative and has the identity 0. Again, no conditions on v (and u) are imposed.

[Distributivity] Because of commutativity, it suffices to look only at $a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$, that is, $a \odot (b+c+u) = (a+b+vab) \oplus (a+c+vac)$ that is, a+(b+c+u)+va(b+c+u) = (a+b+vab)+(a+c+vac)+u, that is, a+b+c+u+vab+vac+uva = 2a+b+c+u+vab+vac; that is, uva = a. Since this must hold for all integers a, we must have uv = 1.

The only possibilities are therefore u = v = 1 and u = v = -1.

Q2. Take u = 1 and v = 1 in Question 1.

- (a) Find the units of $(\mathbb{Z}, \oplus, \odot)$. Find their respective inverses.
- (b) Prove that the set of all odd integers is a subring of this ring. What about the set of all even integers?

Solution 2:

- (a) The multiplicative identity is 0. So $a \odot b = 0$ (with $a \ne -1$) implies a + b + ab = 0 that is, b(a+1) = -a, that is, $b = -(\frac{a}{a+1})$. This b is an integer if and only if a = 0 or a = -2. The inverse of 0 is 0, and of -2 is -2.
- (b) It suffices to verify that $a \ominus b$ and $a \odot b$ are odd if a, b are odd. The additive inverse of b is -2u-b=-2-b which is odd if a is odd. But then, $a \oplus b=a \oplus (-2-b)=a-2-b+1=a-b-1$ is odd if a, b are odd. Also, $a \odot b=a+b+ab$ is odd if a, b are odd.

Even integers do not constitute a subring, because closure of ⊙ does not hold.

Q3. Let \mathbb{Z}_1 be the ring from Question 1 with u=v=1, and \mathbb{Z}_2 the ring from Question 1 with u=v=-1. Define a ring isomorphism $f:\mathbb{Z}_1\to\mathbb{Z}_2$.

Solution 3: Consider the map $f: \mathbb{Z}_1 \to \mathbb{Z}_2$ as f(a) = -a. Then, $f(a \oplus_1 b) = f(a+b+1) = -(a+b+1)$, whereas $f(a) \oplus_2 f(b) = (-a) \oplus_2 (-b) = (-a) + (-b) - 1 = -(a+b+1)$. Moreover, $f(a \odot_1 b) = f(a+b+ab) = -(a+b+ab)$, and $f(a) \odot_2 f(b) = (-a) \odot_2 (-b) = (-a) + (-b) - (-a)(-b) = -(a+b+ab)$.

Q4. Let R be a commutative ring with identity, and R[x] be the set of univariate polynomials with coefficients from R. Define addition and multiplication of polynomials in the usual way. Prove that R[x] is an integral domain if and only if R is an integral domain.

Solution 4: $[\Rightarrow]$ Take non-zero elements $a,b \in R$. Then a and b are non-zero (constant) polynomials. Since R[x] is an integral domain, ab is not the zero polynomial. But ab is again a constant polynomial. It follows that $ab \neq 0$. $[\leftarrow]$ Suppose that there exist A(x), $B(x) \in R[x]$ such that A(x)B(x) = 0, $A(x) \neq 0$ and $B(x) \neq 0$. Write $A(x) = a_0 + a_1x + a_2x^2 + \cdots + a_dx^d$ with $a_d \neq 0$ and $d \geq 0$, and $B(x) = b_0 + b_1x + b_2x^2 + \cdots + b_ex^e$ with $b_e \neq 0$ and $e \geq 0$. Since A(x)B(x) = 0 we have $a_db_e = 0$. This implies that R is not an integral domain.

Q5. Prove that $\mathbb{Z}[\sqrt{5}] = \{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\}\$ is an integral domain.

Solution 5: Closure under subtraction and multiplication is easy to check. Since R is commutative, $\mathbb{Z}[\sqrt{5}]$ is so too. Finally, take a=1 and b=0 in the definition to conclude that $\mathbb{Z}[\sqrt{5}]$ contains the multiplicative identity.

Q6. Let G be a (multiplicative) group, and H, K subgroups of G. Prove that $H \cup K$ is a subgroup of G if and only if $H \subseteq K$ or $K \subseteq H$.

Solution 6: [If] Obvious.

[Only if] $H \cup K$ is a subgroup of G. Suppose that H is not contained in K. Then, there exists $h \in H$ such that $h \notin K$. Take any $k \in K$. Since h, k are both in $H \cup K$ and $H \cup K$ is a subgroup, we have $hk \in H \cup K$. Suppose that $hk \in K$. Since $k \in K$ we have $k^{-1} \in K$, so $(hk)k^{-1} = h \in K$, a contradiction. Therefore $hk \in H$. But $h \in H$, so $h^{-1} \in H$. and therefore $h^{-1}(hk) = k \in H$. It follows that $K \subseteq H$.

Q7. Let G be the set of all points on the hyperbola xy = 1 along with the point $(0, \infty)$ at infinity. Define the operation:

$$\left(a, \frac{1}{a}\right) + \left(b, \frac{1}{b}\right) = \left(a + b, \frac{1}{a + b}\right)$$

Prove that G is an abelian group under this operation.

Solution 7: (a) Closure: For any $a, b \in \mathbb{R}$, either $a + b \neq 0$ and $\left(a + b, \frac{1}{a + b}\right) \in G$, or a + b = 0 and the result is $(0, \infty) \in G$. Hence G is closed under the operation.

2

(b) Associativity: Using the definition of the operation and the associativity of real addition, we have

$$\left(\left(a, \frac{1}{a}\right) + \left(b, \frac{1}{b}\right)\right) + \left(c, \frac{1}{c}\right) = \left(a + b + c, \frac{1}{a + b + c}\right) = \left(a, \frac{1}{a}\right) + \left(\left(b, \frac{1}{b}\right) + \left(c, \frac{1}{c}\right)\right).$$

If a+b+c=0, then both sides equal $(0,\infty)$. Thus associativity holds.

(c) Identity: The element $e = (0, \infty)$ serves as the identity, since

$$\left(a, \frac{1}{a}\right) + e = \left(a + 0, \frac{1}{a + 0}\right) = \left(a, \frac{1}{a}\right)$$

and similarly $e + \left(a, \frac{1}{a}\right) = \left(a, \frac{1}{a}\right)$.

(d) Inverse: The inverse of $\left(a, \frac{1}{a}\right)$ is $\left(-a, -\frac{1}{a}\right)$ because

$$\left(a, \frac{1}{a}\right) + \left(-a, -\frac{1}{a}\right) = (0, \infty) = e.$$

(e) Commutativity: Since real addition is commutative,

$$\left(a,\frac{1}{a}\right) + \left(b,\frac{1}{b}\right) = \left(a+b,\frac{1}{a+b}\right) = \left(b+a,\frac{1}{b+a}\right) = \left(b,\frac{1}{b}\right) + \left(a,\frac{1}{a}\right).$$

Thus the operation is commutative.

Hence, G is an abelian group under the given operation.

Q8. Define an operation on $G = \mathbb{R}^* \times \mathbb{R}$ as:

$$(a,b) \circ (c,d) = (ac,bc+d)$$

Prove that (G, \circ) is a non-abelian group.

Solution 8: [Closure] since for (a,b), $(c,d) \in \mathbb{R}^* \times \mathbb{R}$ we have $((a,b) \circ (c,d) = (ac,bc+d)$ with $ac \in \mathbb{R}^*$ and $bc+d \in \mathbb{R}$.

[Associativity] We have $(a,b) \circ ((c,d) \circ (e,f)) = (a,b) \circ (ce,de+f) = (ace,bce+de+f)$, and $(a,b) \circ (c,d)) \circ (e,f) = (ac,bc+d) \circ (e,f) = (ace,bce+de+f)$.

[Identity] We have $(1,0)\circ(a,b)=(a,b)$ and $(a,b)\circ(1,0)=(a,b)$, so (1,0) is the identity in G. [Inverse] We have $(a,b)\circ(\frac{1}{a},-\frac{b}{a})=(1,0)$ and $(\frac{1}{a},-\frac{b}{a})\circ(a,b)=(1,0)$. Since $a\in\mathbb{R}^*$, $\frac{1}{a}$ is defined. [Non-Abelian] We have $((1,2)\circ(2,3)=(2,7))$, whereas $(2,3)\circ(1,2)=(2,5)$. Hence (G,\circ) is non-abelian.