
Solutions

1. Base case: n=1. For this case, n=1=20. Hence, 1 can be represented as a sum of
distinct powers of 2.

Inductive hypothesis: For n ∊ N, n can be represented as sum of powers of 2.

Inductive step: Using strong induction, we assume that the inductive hypothesis holds
true for all k where 1 ≤ k ≤ n. To prove for n+1, we split the problem into two cases.

Case 1: n+1 is even. Then (n+1)/2 is an integer, and 1 ≤ (n+1)/2 ≤ n, therefore by
inductive hypothesis
(n+1)/2 = 2a1 + 2a2 + ... + 2am , where a1, a2, ..., am are all distinct.
Then n+1 = 2 ∗ (2a1 + 2a2 + ... + 2am) = 2a1+1 + 2a2+1 + ... + 2am+1,
and (a1+1), (a2+1), ..., (am+1) are all distinct as well.

Case 2: n+1 is odd. Then n is even, and from the inductive hypothesis,
n = 2a1 + 2a2 + ... + 2aj, where a1, a2, ..., aj are all distinct and greater than 0.
n+1 = 1 + 2a1 + 2a2 + ... + 2aj = 20 + 2a1 + 2a2 + ... + 2aj, where 0, a1, a2, ..., aj are all
distinct.

Thus, n+1 can be written as a sum of distinct powers of 2 for both cases.

2. Base case: n=1. The first player has no choice but to remove 1 stick and lose.

Inductive hypothesis: If n = 4k + 1, for some k∈ N, then the second player has a
winning strategy; otherwise, the first player has a winning strategy.

Inductive step: Suppose the theorem is true for numbers 1 through n.
For the inductive step, there are four cases:

Case 1: n + 1 = 4k + 1. We assume n + 1 ≥ 5. The first player can remove 1, 2 or 3
sticks. If he\she removes one stick, the remaining number of sticks is n = 4k. By the
inductive hypothesis, the player who plays at this point has a winning strategy. So the
player who played first will lose. Similarly, if the first player removes two sticks, the
remaining number is 4(k−1)+3. Again, the first player loses, by the same reasoning.
Similarly, by removing 3 sticks, the first player loses. So, the first player loses for every
strategy in this case.

Case 2: n + 1 = 4k. The first player removes 3 sticks: there are now 4(k − 1) + 1 sticks
for the turn of the second player, who loses by the inductive hypothesis.

Case 3: n + 1 = 4k + 2.The first player removes 1 stick: there are now 4k + 1 sticks for
the turn of the second player, who loses by the inductive hypothesis.



Case 4: n + 1 = 4k + 3.The first player removes 2 sticks: there are now 4k + 1 sticks for
the turn of the second player, who loses by the inductive hypothesis.

Therefore, the induction hypothesis is proved for all cases.

3.

4. For proving the statement with strong induction, the lemma “Every simple polygon with at
least four sides has an interior diagonal” is required.

Base case: For n=3, the polygon is a triangle, it is triangulated into 3-2=1 triangles.

Induction hypothesis: A simple polygon with n sides, where n is an integer with n ≥ 3,
can be triangulated into n − 2 triangles.

Induction step: Using strong induction, we assume that we can triangulate a simple
polygon with j sides into j−2 triangles whenever 3 ≤ j ≤ k.
Suppose we have a simple polygon P with k + 1 sides. Because k + 1 ≥ 4, from the
lemma P has an interior diagonal ab. Now, ab splits P into two simple polygons Q, with
s sides, and R, with t sides. The sides of Q and R are the sides of P, together with the
side ab, which is a side of both Q and R. 3 ≤ s ≤ k and 3 ≤ t ≤ k because both Q and R
have at least one fewer side than P does. We also get k + 1 = s + t − 2, because both Q
and R have the diagonal as a side that is not a part of P.

We now use the inductive hypothesis. Because both 3 ≤ s ≤ k and 3 ≤ t ≤ k, by the
inductive hypothesis we can triangulate Q and R into s − 2 and t − 2 triangles,
respectively. These triangulations together produce a triangulation of P. (Each diagonal



added to triangulate one of these smaller polygons is also a diagonal of P.)
Consequently, we can triangulate P into a total of (s − 2) + (t − 2) = s + t − 4 = (k + 1) − 2
triangles. This completes the proof by strong induction.


