CS21201 Discrete Structures

Solutions to Practice Problems

Predicate Logic

1. Coding of the statements is as under ($x \in$ Creatures)

S1: $\forall x[\operatorname{Lion}(x) \rightarrow \operatorname{Fierce}(x)]$
S2: $\exists x[\operatorname{Lion}(x) \wedge \neg \operatorname{Drinks} C(x)]$
a. $\exists x \operatorname{Fierce}(x)$

This statement is true if there is at least one lion. We cannot say that this directly follows from S1. This statement is False.
b. From S2, we notice that $\exists x[\operatorname{Lion}(x) \wedge \neg \operatorname{Drinks} C(x)]$. So let that creature be p. We know that p is a lion. From S 1 , any creature who is a lion is fierce. Therefore p is fierce. By existential generalization, $\exists x \operatorname{Fierce}(x)$. Hence this statement is True.
c. $\exists x[\operatorname{Fierce}(x) \wedge \neg \operatorname{DrinksC}(x)]$: Notice that similar to (b), we derive that p is a lion and p does not drink coffee. From S1, all lions are fierce. Therefore p is fierce. This implies that Fierce $(p) \wedge \neg \operatorname{Drinks} C(p)$, by existential generalization, $\exists x[\operatorname{Fierce}(x) \wedge \neg \operatorname{Drinks} C(x)]$. The statement is True.
2. Predicates used are $\operatorname{Respect}(x, y)$: person x respects person y and $\operatorname{Hire}(x, y)$: person x hires person y.
$\mathbf{S 1} \quad: \forall x(\neg \operatorname{Respect}(x, x) \rightarrow \neg \exists y(\operatorname{Respect}(y, x))$
S2 $: \forall x \forall y(\neg \operatorname{Respect}(x, y) \rightarrow \neg \operatorname{Hire}(x, y)) \equiv \forall x \forall y(\operatorname{Hire}(x, y) \rightarrow \operatorname{Respect}(x, y))$
G $: \forall x[(\neg \exists y \operatorname{Respect}(x, y)) \rightarrow(\neg \exists z \operatorname{Hire}(z, x))]$
Simplification of G:
$\forall x[(\neg \exists y \operatorname{Respect}(x, y)) \rightarrow(\neg \exists z \operatorname{Hire}(z, x))]$
$\forall x[(\exists z \operatorname{Hire}(z, x)) \rightarrow(\exists y \operatorname{Respect}(x, y))]$
(2) Contrapositive (1)

Proof by contradiction, assume that $\neg G$ is true.
$\neg \forall x[(\exists z \operatorname{Hire}(z, x)) \rightarrow(\exists y \operatorname{Respect}(x, y))]$
$\exists x \neg[\neg(\exists z \operatorname{Hire}(z, x)) \vee(\exists y \operatorname{Respect}(x, y))]$
(4) Properties of \neg and \rightarrow
$\exists x[(\exists z \operatorname{Hire}(z, x)) \wedge \neg(\exists y \operatorname{Respect}(x, y))]$
(5) De Morgan's Laws

Instantiate (5), by $x=A$ and $z=B$
$\operatorname{Hire}(B, A)$
$\neg(\exists y \operatorname{Respect}(A, y))$
Instantiate S 2 by $x=B$ and $z=A$
$\operatorname{Hire}(B, A) \rightarrow \operatorname{Respect}(B, A)$
$\operatorname{Respect}(B, A)$
(9) Modus Ponens $(7,8)$
$\forall x(\exists y(\operatorname{Respect}(y, x)) \rightarrow \operatorname{Respect}(x, x))$
(10) Contrapositive (S1)

Instantiate by $x=A$ and $y=B$
$\operatorname{Respect}(B, A) \rightarrow \operatorname{Respect}(A, A)$
$\operatorname{Respect}(A, A)$
(12) Modus Ponens(9, 11)

But from (7), $\neg(\exists y \operatorname{Respect}(A, y)) \Rightarrow \forall y \neg \operatorname{Respect}(A, y) \Rightarrow \neg \operatorname{Respect}(A, A)$
Hence we have a contradiction

3. Predicates:

$a(x) \quad$: Person x belongs to the Alpine Club
$s(x) \quad$: Person x is a skier
$m(x)$: Person x is a mountain climber
$l(x, y)$: Person x likes weather event y
Statements:
S1 : a(Tony) $\wedge a($ Mike $) \wedge A($ John $)$
S2 : $\forall x[a(x) \rightarrow(s(x) \vee m(x))]$
S3 : $\neg \exists x[m(x) \wedge l(x$, Rain $)]$
S4 : $\forall x[s(x) \rightarrow l(x$, Snow $)]$
S5 : $\forall y[l($ Mike, $y) \leftrightarrow \neg l($ Tony,$y)]$
S6 : l(Tony, Rain) $\wedge l($ Tony, Snow)
Since Tony likes both Rain and Snow and Mike dislikes whatever Tony likes and likes whatever Tony dislikes
Mike does not like Rain and Mike does not like Snow
$\neg l$ (Mike, Rain)
$\neg l$ (Mike, Snow)
From S4, instantiating $x=$ Mike, we get
$s($ Mike $) \rightarrow l($ Mike, Snow $)$
$\neg S$ (Mike)
(4) Modus Tollens(2, 3)

From S2, instantiating $x=$ Mike, we get
$a($ Mike $) \rightarrow(s($ Mike $) \vee m($ Mike $))$
s (Mike) $\vee \mathrm{m}$ (Mike)
(6) Modus Ponens(S1, 5)
m(Mike)
(7) $(4,6)$

Clearly Mike is a Mountain Climber and not a skier, from (4) and (7).

Proof Techniques

1.

Let $P(n)$ be $n!<n^{n}$.
Base case : We show that $P(n)$ holds for $n=2$.
$n!=2!=2$
$n^{n}=2^{2}=4$
$2<4 \rightarrow n!<n^{n}$ when $n=2$.
Induction hypothesis : Assume that $P(n)$ holds for some $n \in \mathbb{N}$. That is, $n!<n^{n}$ for some $n \in \mathbb{N}$.
Induction step : We show that $P(n+1)$ holds. Consider $(n+1)$!.
$(n+1)$!
$=(n+1) n$! by definition of factorial
$<(n+1) n^{n}$ by the induction hypothesis
$<(n+1)(n+1)^{n}$ by Lemma 1
$<(n+1)^{n+1}$
We have shown that $(n+1)!<(n+1)^{n+1}$, thus $P(n+1)$ holds, completing the induction.
Lemma 1^{4}
We show that $n^{n}<(n+1)^{n}$ for $n>1$.
Binomial theorem : $(a+b)^{k}=a^{k}+k a(k-1) b+\cdots+b^{k}$
$(n+1)^{n}$
$=n^{n}+n \cdot n^{n-1}+\ldots$ using the Binomial Theorem
$>n^{n}$

[^0]2.

Solution [Induction basis] For $n=4$, we have $2^{4}=16<4$! $=24<2^{4 \log _{2} 4}=256$.
[Induction] Suppose that $2^{n}<n!<2^{n \log _{2} n}$ for some $n \geqslant 4$. We then have

$$
(n+1)!=(n+1) \times n!>(n+1) \times 2^{n}>2 \times 2^{n}=2^{n+1}
$$

and

$$
(n+1)!=(n+1) \times n!<(n+1) \times 2^{n \log _{2} n}=(n+1) \times n^{n}<=(n+1)^{n+1}=2^{(n+1) \log _{2}(n+1)} .
$$

3.

Solution By the extended gcd, we always have a representation of the form $1=u\left(\frac{a}{d}\right)+v\left(\frac{b}{d}\right)$ for some integers u, v. Write $u=q\left(\frac{b}{d}\right)+r$ with $0 \leqslant r<\frac{b}{d}$ (Euclidean division). We then have $1=\left(q\left(\frac{b}{d}\right)+r\right)\left(\frac{a}{d}\right)+v\left(\frac{b}{d}\right)=r\left(\frac{a}{d}\right)+s\left(\frac{b}{d}\right)$, where $s=v+q\left(\frac{a}{d}\right)$. If $r=0$, then $s=\frac{d}{b} \leqslant 1 \leqslant \frac{a}{d}$. If $r>0$, then $|s|=\frac{d}{b}\left(r\left(\frac{a}{d}\right)-1\right)<\left(r\left(\frac{d}{b}\right)\right) \frac{a}{d}<\frac{a}{d}$.

4: Proof very similar to the problem done in the class

5. Hint: Let $\mathrm{n}=\mathrm{p} 1^{\mathrm{el}} \mathrm{p} 2^{\mathrm{e} 2} \ldots . \mathrm{pk}^{\mathrm{ek}}$. If n is not a perfect square, at least one of the e 1 ,

 e2,...ek will be odd (Note though that more than one such ei's can be odd too). Use this fact to prove.
6.

a.

Base Case: $n=1$. In this case, we have that $1+\cdots+2^{n}=1+2=2^{2}-1$, and the statement is therefore true.

Inductive Hypothesis: Suppose that for some $n \in \mathbb{N}$, we have $1+2+4+\cdots+2^{n}=2^{n+1}-1$.

Inductive Step: Consider

$$
\begin{aligned}
1+2+4+\cdots+2^{n+1} & =1+2+4+\cdots+2^{n}+2^{n+1} \\
& =\left(2^{n+1}-1\right)+2^{n+1} \quad \text { (by the Inductive Hypothesis) } \\
& =22^{n+1}-1 \\
& =2^{(n+1)+1}-1 .
\end{aligned}
$$

Therefore, we have that if the statement holds for n, it also holds for $n+1$. By induction, then, the statement holds for all $n \in \mathbb{N}$.
b.

Base Case: $n=1$. In this case, we have $\sum_{k=1}^{n} k(k+1)=1(2)=2=\frac{1(2)(3)}{3}$, so the result holds. Inductive Hypothesis: Suppose, for some $n \in \mathbb{N}$, we have $\sum_{k=1}^{n} k(k+1)=\frac{n(n+1)(n+2)}{3}$.
Inductive Step: Consider the case of $n+1$. In this case, we have

$$
\begin{aligned}
\sum_{k=1}^{n+1} k(k+1) & =\sum_{k=1}^{n} k(k+1)+(n+1)(n+2) \\
& =\frac{n(n+1)(n+2)}{3}+(n+1)(n+2) \quad \text { (by the Inductive Hypothesis) } \\
& =\frac{n(n+1)(n+2)+3(n+1)(n+2)}{3} \\
& \left.=\frac{(n+1)(n+2)(n+3)}{3} \quad \text { (by factoring out }(n+1)(n+2)\right)
\end{aligned}
$$

Therefore, we have that if the statement holds for n, it also holds for $n+1$.
Hence, by induction, $\sum_{k=1}^{n} k(k+1)=\frac{n(n+1)(n+2)}{3}$ for all $n \in \mathbb{N}$.
c.

Base Case: $n=5$. Then $4 n=20<32=2^{n}$, and the result is true.
Inductive Hypothesis: Suppose, for some $n \geq 5$, that $4 n<2^{n}$.
Inductive Step: Consider $n+1$. We have

$$
\begin{aligned}
4(n+1) & =4 n+4 \\
& <2^{n}+4 \quad(\text { by the Inductive Hypothesis }) \\
& <2^{n}+2^{n} \quad\left(\text { since } 2^{n}>4 \text { for all } n \geq 5\right) \\
& =2^{n+1} .
\end{aligned}
$$

Therefore, if the result holds for n, it also holds for $n+1$.
Thus, by induction, we have that $4 n<2^{n}$ for all $n \geq 5$.

CS21201 Discrete Structures
Solutions to Tutorial Problems

Predicate Logic and Proof Techniques

1. Notice that the domain of x and y have been restricted to Candidates and Questions respectively, this is to minimize the predicates to be used. Any other method which involves predicates like $C(x): x$ is a candidate, $Q(y): y$ is a question and $A(x, y): x$ answers y is also fine.

Q1 a) $A(x, y)$: Candidate x answers Question y
b) $s 1: \quad \exists y \forall x[(7 z A(x, z)) \longrightarrow A(x, y)]$

S2: $\forall x \exists y A(x, y)$
$G: \quad \exists y \forall x A(x, y)$
C) $\mathrm{S1}$

$$
\exists y \forall x[(\exists z A(x, z)) \rightarrow A(x, y)]
$$

Let $y=P \quad$ (instantiation)
Then,

$$
\text { SI: } \forall x[(\exists 2 A(x, z)) \rightarrow A(x, p)]
$$

$$
\text { SQ: } \forall x[\exists z A(x, z)]
$$

Do universal instantiation for every x [i.e. Every candidate]
SI: $\quad \exists 2 A(c, z) \rightarrow A(c, p)$
SD: $\frac{\exists_{2} A(c, z)}{A(c, p)}$
[Modes Pones]

$$
A(c, p)
$$

$$
\therefore \quad \forall x A(x, p)
$$

[Universal generalization]
$\therefore \quad \exists y \forall x A(x, y) \equiv G \quad$ [Existential generalization]
2. (a) Bob imitates Alice.
(b) Alice forces Bob to the situation $m=n$.
3. (b)

Solution [Base] For $n=1$, we have $H_{1}=1 \leqslant 1+0=1+\ln 1$.
[Induction] Take $n \geqslant 1$, and assume that $H_{n} \leqslant 1+\ln n$. Then we have

$$
\begin{aligned}
H_{n+1} & =H_{n}+\frac{1}{n+1} \\
& \leqslant 1+\ln n+\frac{1}{n+1} \\
& =1+\ln (n+1)+\frac{1}{n+1}+(\ln n-\ln (n+1)) \\
& =1+\ln (n+1)+\frac{1}{n+1}+\ln \left(\frac{n}{n+1}\right) \\
& =1+\ln (n+1)+\frac{1}{n+1}+\ln \left(1-\frac{1}{n+1}\right) \\
& =1+\ln (n+1)+\frac{1}{n+1}-\frac{1}{n+1}-\frac{1}{2}\left(\frac{1}{n+1}\right)^{2}-\frac{1}{3}\left(\frac{1}{n+1}\right)^{3}-\frac{1}{4}\left(\frac{1}{n+1}\right)^{4}-\cdots \\
& =1+\ln (n+1)-\left[\frac{1}{2}\left(\frac{1}{n+1}\right)^{2}+\frac{1}{3}\left(\frac{1}{n+1}\right)^{3}+\frac{1}{4}\left(\frac{1}{n+1}\right)^{4}+\cdots\right] \\
& \leqslant 1+\ln (n+1) .
\end{aligned}
$$

Since $n \geqslant 1$, we have $0<\frac{1}{n+1} \leqslant \frac{1}{2}<1$, and so we can use the above expansion of $\ln \left(1-\frac{1}{n+1}\right)$.

[^0]: ${ }^{4}$ This is a higher level of detail than we required for full credit.

