CS21201 Discrete Structures Solutions to Practice Problems

Propositional Logic

1. Coding using Propositional Logic is as follows:

S1 : $\neg S \lor D$ S2 : $\neg R \lor E$ S3 : $(S \land \neg R) \lor (\neg S \land R)$ S4 : $\neg S \lor E$ S5 : $\neg R \lor D$ G : $(\neg E \lor \neg D) \land (D \lor E)$

The goal should be easy enough to derive using the truth table method

- 2. **Solution I**: Assume that Ronaldo knows Mbappe means that they both know each other. Propositions used are as follows:
 - K : Mbappe knows Ronaldo (Ronaldo knows Mbappe)
 - HL : Haaland likes the cookies
 - MBP : Mbappe was on the pitch
 - MEP : Messi was on the pitch

Messi: $K \land HL$ Mbappe: $\neg K \land \neg MBP$ Haaland: $MBP \land MEP$

Since one and only one of Haaland, Mbappe or Messi ate the cookies. We break the problem down into three cases depending on who ate the cookies:

- a. <u>Messi:</u> Both Mbappe and Haaland are telling the truth. But for that to be true, $\neg MBP$ and MBP have to be true at the same time, **not possible**
- b. <u>Haaland</u>: Both Messi and Mbappe are telling the truth. But for that to be true, *K* and $\neg K$ have to be true, **not possible**
- c. <u>Mbappe:</u> It can be seen that this is the only possible case. Since we can keep HL = 1 and MEP = 1.

Solution II: Assume that Ronaldo knows Mbappe but Mbappe does not know Ronaldo. In that case, we design two predicates:

- KMR : Mbappe knows Ronaldo
- KRM : Ronaldo knows Mbappe

Messi: $KRM \land HL$ Mbappe: $\neg KMR \land \neg MBP$ Haaland: $MBP \land MEP$

Since one and only one of Haaland, Mbappe or Messi ate the cookies. We break the problem down into three cases depending on who ate the cookies:

- a. Messi: Not possible, see Solution I
- b. <u>Haaland</u>: Both Messi and Mbappe are telling the truth. But for that to be true, *KRM* and $\neg KMR$ have to be true (in addition to *HL* and $\neg MBP$), **possible**
- c. Mbappe: Possible, see Solution I

Under this assumption, the identity of the thief cannot be ascertained.

3. Denote the *NAND*(*x*) function as *N*(*x*). You can write $\neg X$ as *N*(*X*, *X*).

a.
$$P \rightarrow Q \equiv \neg P \lor Q \equiv \neg (P \land \neg Q)$$

 $\equiv N(P, \neg Q)$ (Using De Morgan's Theorem)
 $\equiv N(P, N(Q, Q))$

b.
$$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$$

$$\equiv N(P, N(Q, Q)) \land N(Q, N(P, P))$$

To simplify things a bit, choose: X = N(P, N(Q, Q)) and Y = N(Q, N(P, P))

- $P \leftrightarrow Q \equiv X \land Y \equiv \neg(\neg X \lor \neg Y) \quad \text{(using De Morgan's Theorem)}$ $\equiv N(N(X, X), N(Y, Y))$
- c. $P \oplus Q \equiv (P \lor Q) \land (\neg Q \lor \neg P)$ $X = (P \lor Q) \equiv N(\neg P, \neg Q) \equiv N(N(P, P), N(Q, Q))$ $Y = (\neg P \lor \neg Q) \equiv N(P, Q)$ Repeat the solution to part (b).

4.

a. Notice that any formula constructed with ⊕ will always be false when all propositions are false. However, consider ¬A. If A is false, then ¬A is true. Therefore, there are propositional logic formulae which can never be covered by ⊕ and hence {⊕} is not functionally complete.

b. This question is wrong. It can be seen that any combination of {⊕, ∧} is always false whenever all propositions are false, since both A ⊕ B and A A ∧ B give false values when both A and B are false.
Similar to part (a), consider ¬A, to continue.

5.

- a. It is sufficient to prove that $(p \lor q) \land (\neg q \lor r) \land \neg (p \lor r)$ is a contradiction: $(p \lor q) \land (\neg q \lor r) \land \neg (p \lor r) \equiv (p \lor q) \land (\neg q \lor r) \land \neg p \land \neg r$ By Disjunctive Syllogism, $(p \lor q) \land \neg p \to q$ and $(\neg q \lor r) \land \neg r \to \neg q$ Hence Proved
- b.
- i. This question has been changed, consider the corrected problem as uploaded on the webpage:
 - $p \rightarrow s \equiv \neg p \lor s$ (1) $p \lor (q \land r)$ (2) $s \lor (q \land r)$ (3) Resolution Rule (2, 3) $(s \lor q)$ (4) Distribution (3) $(s \lor r)$ (5) Distribution (3)

Hence proved

Note that in the original problem, the goal could not be derived from the statements.

(1) ii. $(\neg q \lor r)$ $(p \lor q \lor t)$ (2) $(p \lor r \lor t)$ (3) Resolution Rule (2, 3) $(\neg p \lor s)$ (4) $(s \lor r \lor t)$ (5) Resolution Rule (3, 4) $\neg t \lor (s \land r)$ (6) $(s \lor r) \lor (s \land r)$ (7) Resolution Rule (5, 6) $(s \lor r \lor s) \land (s \lor r \lor r)$ (8) Distribution (7) $(s \vee r)$ (9) Simplification

- a. Trivial, consider an alternate form of $A \to B$ as $\neg A \lor B$. $Q = \neg (S_1 \land S_2 \land \dots \land S_n) \lor G$ is a tautology. Therefore, $\neg Q$ is a contradiction. $\neg Q = \neg (\neg (S_1 \land S_2 \land \dots \land S_n) \lor G) = (S_1 \land S_2 \land \dots \land S_n) \land \neg G$
- b. S1: $(p \rightarrow q) \rightarrow q \equiv \neg(\neg p \lor q) \lor q \equiv (p \land \neg q) \lor q \equiv p \lor q$ S2: $(p \rightarrow p) \rightarrow r \equiv \neg(\neg p \lor p) \lor r \equiv r$ Hence the goal directly follows from S2.
- 7. Consider the propositions for the problem:
 - WF : Water altar contains the mysteries of fire
 - EF : Earth altar contains the mysteries of fire
 - EW : Earth altar holds the secrets of water
 - AW : Air altar holds the secrets of water
 - FE : Fire altar holds the energy of earth
 - AE : Air altar holds the energy of earth
 - AF : Air altar holds the mysteries of fire
 - AA : Air altar holds the strength of air
 - EA : Earth altar holds the strength of air
 - FW : Fire altar holds the secrets of water
 - FA : Fire altar holds the strength of air
 - FE : Fire altar holds the energy of earth
 - a. $\neg (WF \land EF) \equiv \neg WF \lor \neg EF$
 - b. $\neg(\neg EW \land \neg AW) \equiv EW \lor AW$
 - C. $\neg (FE \land (\neg AW \land \neg AE \land \neg AF \land \neg AA))$ $\neg FE \lor \neg (\neg AW \land \neg AE \land \neg AF \land \neg AA) \equiv \neg FE \lor AW \lor AE \lor AF \lor AA$
 - d. $\neg(\neg EA \land (\neg FW \land \neg FE \land \neg FF \land \neg FA))$ EA $\lor FW \lor FE \lor FF \lor FA$

From the second statement, it is clear that either the earth altar or the air altar holds the power of water.

Earth altar holds the power of water Consider EW = 1, FA = 1, AE = 1, WF = 1Air altar holds the power of water Consider AW = 1, FA = 1, AE = 1, WF = 1 Therefore, both the Earth and Air altars can hold the power of water.

8. $(r \to \neg q)$ (1) $(p \to q)$ (2) $(q \to \neg r)$ (3) Contrapositive (1) $(p \to \neg r)$ (4) Transitive Implication $(r \to \neg p)$ (5) Contrapositive (4)

It is clear from the above derivation that \rightarrow holds. However, \leftarrow does not hold. Choose the values of p, q and r as r = T, p = F and q = T.

9.

a. $(Smoke \rightarrow Fire) \rightarrow (\neg Smoke \rightarrow \neg Fire)$ (1) $\equiv (Smoke \rightarrow Fire) \rightarrow (Fire \rightarrow Smoke)$ (2) Contrapositive (1)

Valid: No (Smoke = F, Fire = T) **Satisfiable**: Yes (Smoke = T, Fire = T)

- b. ((Smoke ∧ Heat) → Fire) ↔ ((Smoke → Fire) ∨ (Heat → Fire)) ((Smoke ∧ Heat) → Fire) ≡ ¬Smoke ∨ ¬Heat ∨ Fire ≡ ¬Smoke ∨ Fire ∨ ¬Heat ∨ Fire ≡ (Smoke → Fire) ∨ (Heat → Fire) Valid: Yes Satisfiable: Yes
- c. $Big \lor Dumb \lor (Big \to Dumb)$ $\equiv Big \lor Dumb \lor (\neg Big \lor Dumb) \equiv Dumb$

Valid: No (Dumb = F)Satisfiable: Yes (Dumb = T)

- d. $(Big \land Dumb) \lor \neg Dumb \equiv (Big \lor \neg Dumb) \land (Dumb \lor \neg Dumb)$ $(Big \lor \neg Dumb)$ **Valid**: No (Big = F, Dumb = T)**Satisfiable**: Yes (all other truth values)
- e. $(Smoke \rightarrow Fire) \rightarrow ((Smoke \land Heat) \rightarrow Fire)$ $Heat = T \Rightarrow (Smoke \rightarrow Fire) \rightarrow (Smoke \rightarrow Fire) = T$ $Heat = F \Rightarrow (Smoke \rightarrow Fire) \rightarrow T = T$ Valid: Yes Satisfiable: Yes

CS21201 Discrete Structures Solutions to Tutorial Problems

Propositional Logic

	Tutorial – 2 Propositional Logic			
Qu	estion - 1			
<u>a)</u>	Propositions used are as follows:			
	p: Swapna wrote the paper.			
	t: Swapne typed the answers			
	A: Swapna has a camera			
	c : Swapna completed in time			
(b)	S1: pvt			
	S2: $(P \vee \neg h) \rightarrow \neg C$			
	<u>\$3: ¬c</u>			
	G: P			
(c)	P = F, $c = F$, $h = F$, $t = T$ S1, S2 and S3 are time			
(c)	but Gir false			
	hence SIAS2AS3 -> G			
	is not a Tantology.			

2.

Solution The first deduction goes as follows.

$\neg(s \lor u)$	$\neg u$ $t \rightarrow u$	$r \to (s \lor t)$ $\neg s \ , \ \neg t$	$(\neg p \lor q) \to r$ $\neg r$	$\begin{array}{c} q \leftrightarrow v \\ \neg q \end{array}$
$\therefore \neg s, \neg u$		$\therefore \neg r$	$\therefore p \land \neg q$.∴. ¬v
$ (v \land \neg w) \lor (\neg v \land w) \to \neg p $ $ p $		$(\neg v \lor w) \land (v \lor \neg w)$ $\neg v$		
$\therefore (\neg v \lor w) \land (v \lor \neg w)$.∴. <i>¬w</i>	

Solution We may use the following propositions.

- rob : The murder was done for robbery.
- pol : The murder was a political assassination.
- wom : The murder was for a woman.
- tak : Something was taken from the murderer's place.
- imm : The assassin left immediately after work done.
 - tre : The assassin left tracks all over the room.

b.

a.

```
Solution (1) \neg \operatorname{rob} \rightarrow \operatorname{pol} \lor \operatorname{wom}
(2) \operatorname{rob} \rightarrow \operatorname{tak}
(3) \neg \operatorname{tak}
(4) \operatorname{pol} \rightarrow \operatorname{imm}
(5) \operatorname{trc}
(6) \operatorname{trc} \rightarrow \neg \operatorname{imm}
```

C.

```
Solution rob \rightarrow tak
```

```
¬tak

    (Modus Tollens)

∴ ¬rob
¬rob
\neg \operatorname{rob} \rightarrow \operatorname{pol} \lor \operatorname{wom}

    (Modus Ponens)

\therefore pol \lor wom
trc
trc \rightarrow \neg imm
                  (Modus Ponens)
∴ ¬ imm
¬ imm
pol \rightarrow imm
                     _ (Modus Tollens)
∴ ¬pol
pol \lor wom
¬pol
                         (Disjunctive Syllogism)
∴ wom
```

d. The murder was done for a woman

3.