Additive identity: (0,0). Multiplicative identity: (0, 1).

Suppose that A is not a perfect square, and (a.b) @ (¢,d) = (0,0), that is. ad + bc = 0 and bd + Aac = 0. But
then, a(bd + Aac) — b(ad + bc) = 0, that is, (Aa” — b*)c = 0. Since A is not a perfect square, we cannot have
Aa® —b* =0or A = (b/a)’. Therefore we must have ¢ = 0. This in turn implies ad = 0 and bd = 0. If d = 0,
we have ¢ = d = 0, whereas if d £ 0, we have a = b = 0. That is. A does not contain non-zero zero divisors.

Conversely, let L = . As derived above, we see that Aa”> — b* = 0 is a necessary condition for the existence of
non-zero zero divisors. We need to show that this condition is also sufficient. Taking @ = 1 and b = « satisfies
the condition. We should also have ad + bc = 0, that is, § = — 3, that is, we can take ¢ = 1 and d = — . But then,
bd + Aac = —a” + A = 0. Since (1,e) and (1, —ot) are non-zero elements of A, and (1, &) = (1, —e) = (0,0),
A is not an integral domain.

Leta,b € S,suchthata € T1anda<¢T2,b € T2andb € T1.Sincea,b€ S,a+b €
S.SinceS S T1UT2,a+b € T1 UT2, which means a+b must be eitherin T1 or T2 or
both.

Leta+ b € T1. Then, since T1 is a subring, (atb)-a=(b+a)-a=b € T1,
contradiction.

Leta+ b € T2. Then, since T2 is a subring, (a+b) - b = a € T2, contradiction.

Thus,S S T1orS & T2.

Proof. Fix a,b € G. Then (ab)(ab)(ab)(ab)(ab) = (ab)® = a®b® and cancelation of the end-
terms, or multiplication by inverses, implies that (ba)! = b(ab)(ab)(ab)a = a’b*. Likewise,
(ab)(ab)(ab) = (ab)® = a®b® which implies that

(1) (ba)? = a’b?

again by cancelation. But (ba)* = (ba)?(ba)? = a®b*a®b? so that a’b? = a®b?a®b®. Cancelation
again implies a?b® = b%a? which is certainly getting us closer. Now, using Equation 1, but
switching the roles of a and b, we have (ab)? = b%a?, so that a’b? = b®a® = (ab)? = (ab)(ab).
Cancelation of the end-terms one last time yields ab = ba which proves that G is Abelian. [

[If] Let A hy,hy € H and k, k|, k> € K. We have (h]kl)(hzkz) = h; (klhz)kz. Since KH = HK, kjhy = hsk; for
some h3 € H and k3 € K. Therefore (hyky)(hoky) = hy (h3k3)ko = (h1h3) (ksky) € HK. Next, consider (hk)~! =
k~'h~!. Since KH = HK, we have k~'h~! = hyky for some hy € H and k4 € K, so (hk)~! = hyky € HK.

[Only if] Take hk € HK. Since HK is a subgroup, we have (hk)_] € HK, that is, there exist by € H and k; € K
such that (hk)~" = hik;. But then, hk = (hik;)~' = k;'h7' € KH. Thatis, HK C KH.

Conversely, take kh € KH. We have hleHandk 'eK,soh 'k~ '€ HK. Since HK is a subgroup, we have
(h='k~")~! = kh € HK. Therefore KH C HK.

Practice Problems

Proof: To show that H is a subgroup, it is sufficient to show closure property and the
existence of inverse of all elements.



Closure: Letp € H,qg€ H. Thenpog=gop,gog=goqforallgin G. Then
(Pog)og=po(qog)=po(goq)=(pog)oq=(gop)oq=go(poq), which
shows thatpoq € H.

Inverse: Letp € H. Thenpog=gopforallginG.
= plo(pog)op’=plo(gop)op’
= gop'=plogforallginG.
Thus, p'€ H.

Hence, H is a subgroup.

Reflexivity Let z € G'; we want to show that z R z, thatis, zz~ ! € H. This is true, because
-1 _
zrt=1c H.

Simmetry Let z, y € G and suppose z R y. We want to show that y R z, thatis,yz ! € H. By
hypothesis, zy ! € H, so, by the properties of a subgroup, (;I:y_l)_l € H; but, by general rule,

(zy~1)~! = yz !, so we are done.

Transitivity Let z, y, z € G and suppose z R yand y R z. We want to show that z R z, that is
xz ! € H. Weknowthatzy ! € Handyz ! € H,so (zy !)(yz!) € H.But

(zy 1) (yz~1) = zz71, so we are done.

7. Associativity: Let (g4, h,), (g2, h,) and (gs, h;) € G x H. Then ((g4, hy)-(g2, h,))-(gs, hs) =
(910 92, h1™N3).(s, h3) = ((910 92)0 s, (N1*h2)*hs) = (940 (920 gs), hi*(hy*hy)).

(91, h1)-((92, h2)-(gs, h3)) = (g1, h1).(920 G5, h2"h3) = (910 (920 g3), h1*(h2*hs)).

Hence, (G x H, .) is associative.

Identity: Let e be the identity element of G and e, be the identity element of H. Then,
(9, h).(es, en) = (go eg, h™ey) = (g, h) and (eg, en).(g, h) = (es0 g, e4*h) = (g, h) for all (g,
h) € G x H. Therefore, (eg, ey) is the identity element of (G x H, .).

Inverse: Let g be the inverse of g in G and h™' be the inverse of h in H. Then,

(gl h)'(g-1! h_1) = (go g_1! h*h_1) = (eGl eH) and (9-11 h_1)'(g’ h) = (9_1 o g’ h_1*h) = (eGl eH)
Therefore, (g, h™) is the inverse of (g, h) in (G x H, .).

8. For R to be a ring, distributive property of . over + must hold. We show that it does not
hold.
Considerf(n) =n+1,g(n)=1, h(n)=1foralln € Z. Then (f.(g + h))(n) = f(g(n) + h(n)) =
f(1+1) =f(2) = 3.
f(g(n)) + f(h(n)) = f(1) + f(1) = 2+2 = 4.
Thus, R is not a ring.



9. b. [=] Take non-zero elements a, b € R. Then a and b are non-zero (constant)
polynomials. Since R[x] is an integral domain, ab is not the zero polynomial. But ab is again a

constant polynomial. It follows that ab 6 = 0.

[<] Suppose that there exist A(x), B(x) € R[x] such that A(x)B(x) = 0, A(x) 6 =0, and B(x) 6 = 0.

Write A(x) =a0 + alx + a2x2 + - -

-+ ad xd with ad 6 =0 and d > 0, and B(x) = b0 + b1x + b2x2

+ - -+ + bexe with be 6 = 0 and e > 0. Since A(x)B(x) = 0, we must be = 0. This implies that R is

not an integral domain.

10. a.

Since & is a subset of the ring of 2 x 2 matrices with real entries, it suffices to show closure under addition,

multiplication, and additive inverse in order to prove that 4 is a ring.

a b + c dy [ (atc) (b+d)

—b a —d ¢ ) \—(b+d) (a+c))’
a b ¢ d\ [ (ac—bd) (ad+bc)
b a —d ¢} \—(ad+bc) (ac—bd) |’

[ a by _( (—a)
—b a) \—(=b)

For commutativity, note that

a b c d _ (ac— bd)
—b a —d ¢ - —(ad + bc)

(ca—db)
—(da+cbh)

Finally, the 2 x 2 identity matrix is in A.

{ad + be

{ac—bd )

)

)
(da+ch)y
{_L'a—d’b}) a (

c d a b
—-d ¢ —b al’



b.

Define the map f: A — Cas

/(5 ) oo

We have
f((_ab i)J“(—Cd f)) - f’((_(?bt% Eiiﬂ)):(a+c)+i(b+d}

(a+w}+(c+id3=f((fb 2))”((—(& f))

(5 D5 D) = (Lo ) =it

wrmiesin=r(( 4, 2))r((5 9))

Therefore f is a ring homomorphism. Clearly, f is surjective. Finally.

(5 2)-((% ©)

implies that a+ ib = c+id. that is, a = ¢ and b = d. that is,

(4 9)=(59).

So f is injective too.

and

1.
(G, *) is a group, because it satisfies the following properties of a group.

Closure: Forany p.g € G, pxg= pocog € G, since ¢ € G and G is closed under the operation o.

Associativity: For any p,q,r € G, since G is associative under the operation o, we get:

(pxq)*r=(pocoqg)ocor=poco(gocor)=px(gx*r)
Identity: ¢! is the identity element. For any element p € G, we get:

1 1

pxc  =pococ !

—poeg=p and ¢ 'xp=clocop=egop=p
where, e € G is the identity element with respect to the group (G, o).

Inverse: For any element p € G, let p’ € G be its inverse with respect to . Now, by definition we should get
prp'=cl=p'xp.

sopocop'=c! or plocop=c! = p=cloploc!

1

where, p~' is the inverse of p with respect to the operation o.



