1.

Additive identity: (0,0). Multiplicative identity: (0,1).

Suppose that λ is not a perfect square, and $(a,b) \odot (c,d) = (0,0)$, that is, ad + bc = 0 and $bd + \lambda ac = 0$. But then, $a(bd + \lambda ac) - b(ad + bc) = 0$, that is, $(\lambda a^2 - b^2)c = 0$. Since λ is not a perfect square, we cannot have $\lambda a^2 - b^2 = 0$ or $\lambda = (b/a)^2$. Therefore we must have c = 0. This in turn implies ad = 0 and bd = 0. If d = 0, we have c = d = 0, whereas if $d \neq 0$, we have a = b = 0. That is, A does not contain non-zero zero divisors.

Conversely, let $\lambda = \alpha^2$. As derived above, we see that $\lambda a^2 - b^2 = 0$ is a necessary condition for the existence of non-zero zero divisors. We need to show that this condition is also sufficient. Taking a = 1 and $b = \alpha$ satisfies the condition. We should also have ad + bc = 0, that is, $\frac{a}{b} = -\frac{c}{d}$, that is, we can take c = 1 and $d = -\alpha$. But then, $bd + \lambda ac = -\alpha^2 + \lambda = 0$. Since $(1, \alpha)$ and $(1, -\alpha)$ are non-zero elements of A, and $(1, \alpha) \odot (1, -\alpha) = (0, 0)$, A is not an integral domain.

Let a, b ∈ S, such that a ∈ T1 and a ∉ T2, b ∈ T2 and b ∉ T1. Since a, b ∈ S, a + b ∈
 S. Since S ⊆ T1 ∪T2, a + b ∈ T1 ∪T2, which means a+b must be either in T1 or T2 or both.

Let $a + b \in T1$. Then, since T1 is a subring, $(a+b) - a = (b+a) - a = b \in T1$, contradiction.

Let $a + b \in T2$. Then, since T2 is a subring, $(a+b) - b = a \in T2$, contradiction. Thus, $S \subseteq T1$ or $S \subseteq T2$.

3.

Proof. Fix $a, b \in G$. Then $(ab)(ab)(ab)(ab)(ab) = (ab)^5 = a^5b^5$ and cancelation of the endterms, or multiplication by inverses, implies that $(ba)^4 = b(ab)(ab)(ab)a = a^4b^4$. Likewise, $(ab)(ab)(ab) = (ab)^3 = a^3b^3$ which implies that

$$(1) (ba)^2 = a^2 b^2$$

again by cancelation. But $(ba)^4 = (ba)^2(ba)^2 = a^2b^2a^2b^2$ so that $a^4b^4 = a^2b^2a^2b^2$. Cancelation again implies $a^2b^2 = b^2a^2$ which is certainly getting us closer. Now, using Equation 1, but switching the roles of a and b, we have $(ab)^2 = b^2a^2$, so that $a^2b^2 = b^2a^2 = (ab)^2 = (ab)(ab)$. Cancelation of the end-terms one last time yields ab = ba which proves that G is Abelian. \Box

4.

[If] Let $h, h_1, h_2 \in H$ and $k, k_1, k_2 \in K$. We have $(h_1k_1)(h_2k_2) = h_1(k_1h_2)k_2$. Since KH = HK, $k_1h_2 = h_3k_3$ for some $h_3 \in H$ and $k_3 \in K$. Therefore $(h_1k_1)(h_2k_2) = h_1(h_3k_3)k_2 = (h_1h_3)(k_3k_2) \in HK$. Next, consider $(hk)^{-1} = k^{-1}h^{-1}$. Since KH = HK, we have $k^{-1}h^{-1} = h_4k_4$ for some $h_4 \in H$ and $k_4 \in K$, so $(hk)^{-1} = h_4k_4 \in HK$.

[Only if] Take $hk \in HK$. Since HK is a subgroup, we have $(hk)^{-1} \in HK$, that is, there exist $h_1 \in H$ and $k_1 \in K$ such that $(hk)^{-1} = h_1k_1$. But then, $hk = (h_1k_1)^{-1} = k_1^{-1}h_1^{-1} \in KH$. That is, $HK \subseteq KH$.

Conversely, take $kh \in KH$. We have $h^{-1} \in H$ and $k^{-1} \in K$, so $h^{-1}k^{-1} \in HK$. Since HK is a subgroup, we have $(h^{-1}k^{-1})^{-1} = kh \in HK$. Therefore $KH \subseteq HK$.

Practice Problems

5. Proof: To show that H is a subgroup, it is sufficient to show closure property and the existence of inverse of all elements.

Closure: Let $p \in H$, $q \in H$. Then $p \circ g = g \circ p$, $q \circ g = g \circ q$ for all g in G. Then $(p \circ q) \circ g = p \circ (q \circ g) = p \circ (g \circ q) = (p \circ g) \circ q = (g \circ p) \circ q = g \circ (p \circ q)$, which shows that $p \circ q \in H$. Inverse: Let $p \in H$. Then $p \circ g = g \circ p$ for all g in G. $\Rightarrow p^{-1} \circ (p \circ g) \circ p^{-1} = p^{-1} \circ (g \circ p) \circ p^{-1}$ $\Rightarrow g \circ p^{-1} = p^{-1} \circ g$ for all g in G. Thus, $p^{-1} \in H$. Hence, H is a subgroup.

6.

Reflexivity Let $x \in G$; we want to show that x R x, that is, $xx^{-1} \in H$. This is true, because $xx^{-1} = 1 \in H$.

Simmetry Let $x, y \in G$ and suppose x R y. We want to show that y R x, that is, $yx^{-1} \in H$. By hypothesis, $xy^{-1} \in H$, so, by the properties of a subgroup, $(xy^{-1})^{-1} \in H$; but, by general rule, $(xy^{-1})^{-1} = yx^{-1}$, so we are done.

Transitivity Let $x, y, z \in G$ and suppose x R y and y R z. We want to show that x R z, that is $xz^{-1} \in H$. We know that $xy^{-1} \in H$ and $yz^{-1} \in H$, so $(xy^{-1})(yz^{-1}) \in H$. But $(xy^{-1})(yz^{-1}) = xz^{-1}$, so we are done.

7. Associativity: Let (g_1, h_1) , (g_2, h_2) and $(g_3, h_3) \in G \times H$. Then $((g_1, h_1).(g_2, h_2)).(g_3, h_3) =$

 $(g_1 \circ g_2, h_1^* h_2) \cdot (g_3, h_3) = ((g_1 \circ g_2) \circ g_3, (h_1^* h_2)^* h_3) = (g_1 \circ (g_2 \circ g_3), h_1^* (h_2^* h_3)).$

 $(g_1, h_1).((g_2, h_2).(g_3, h_3)) = (g_1, h_1).(g_2 \circ g_3, h_2*h_3) = (g_1 \circ (g_2 \circ g_3), h_1*(h_2*h_3)).$ Hence, $(G \times H, .)$ is associative.

Identity: Let e_G be the identity element of G and e_H be the identity element of H. Then, (g, h).(e_G , e_H) = (g o e_G , h^*e_H) = (g, h) and (e_G , e_H).(g, h) = (e_G o g, e_H^*h) = (g, h) for all (g, h) \in G × H. Therefore, (e_G , e_H) is the identity element of (G × H, .).

Inverse: Let g^{-1} be the inverse of g in G and h^{-1} be the inverse of h in H. Then,

 $(g, h) \cdot (g^{-1}, h^{-1}) = (g \circ g^{-1}, h^*h^{-1}) = (e_G, e_H) \text{ and } (g^{-1}, h^{-1}) \cdot (g, h) = (g^{-1} \circ g, h^{-1}*h) = (e_G, e_H).$ Therefore, (g^{-1}, h^{-1}) is the inverse of (g, h) in $(G \times H, .)$.

8. For R to be a ring, distributive property of . over + must hold. We show that it does not hold.
Consider f(n) = n + 1, g(n) = 1, h(n) = 1 for all n ∈ Z. Then (f.(g + h))(n) = f(g(n) + h(n)) = f(1+1) = f(2) = 3.
f(g(n)) + f(h(n)) = f(1) + f(1) = 2+2 = 4.
Thus, R is not a ring.

9. b. $[\Rightarrow]$ Take non-zero elements a, b \in R. Then a and b are non-zero (constant) polynomials. Since R[x] is an integral domain, ab is not the zero polynomial. But ab is again a constant polynomial. It follows that ab 6 = 0.

[⇐] Suppose that there exist A(x), B(x) \in R[x] such that A(x)B(x) = 0, A(x) 6 = 0, and B(x) 6 = 0. Write A(x) = a0 + a1x + a2x2 + · · · + ad xd with ad 6 = 0 and d > 0, and B(x) = b0 + b1x + b2x2 + · · · + bexe with be 6 = 0 and e > 0. Since A(x)B(x) = 0, we must be = 0. This implies that R is not an integral domain.

10. a.

Since \mathbb{A} is a subset of the ring of 2×2 matrices with real entries, it suffices to show closure under addition, multiplication, and additive inverse in order to prove that \mathbb{A} is a ring.

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} + \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} (a+c) & (b+d) \\ -(b+d) & (a+c) \end{pmatrix}.$$

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} (ac-bd) & (ad+bc) \\ -(ad+bc) & (ac-bd) \end{pmatrix}.$$

$$- \begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} (-a) & (-b) \\ -(-b) & (-a) \end{pmatrix}.$$

For commutativity, note that

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} = \begin{pmatrix} (ac-bd) & (ad+bc) \\ -(ad+bc) & (ac-bd) \end{pmatrix}$$
$$= \begin{pmatrix} (ca-db) & (da+cb) \\ -(da+cb) & (ca-db) \end{pmatrix} = \begin{pmatrix} c & d \\ -d & c \end{pmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

Finally, the 2×2 identity matrix is in A.

b.

Define the map $f : \mathbb{A} \to \mathbb{C}$ as

$$f\left(\begin{pmatrix}a&b\\-b&a\end{pmatrix}\right) = a + \mathbf{i}b.$$

We have

$$f\left(\begin{pmatrix}a&b\\-b&a\end{pmatrix}+\begin{pmatrix}c&d\\-d&c\end{pmatrix}\right) = f\left(\begin{pmatrix}(a+c)&(b+d)\\-(b+d)&(a+c)\end{pmatrix}\right) = (a+c)+\mathbf{i}(b+d)$$
$$= (a+\mathbf{i}b)+(c+\mathbf{i}d) = f\left(\begin{pmatrix}a&b\\-b&a\end{pmatrix}\right)+f\left(\begin{pmatrix}c&d\\-d&c\end{pmatrix}\right)$$

and

$$f\left(\begin{pmatrix}a&b\\-b&a\end{pmatrix}\begin{pmatrix}c&d\\-d&c\end{pmatrix}\right) = f\left(\begin{pmatrix}(ac-bd)&(ad+bc)\\-(ad+bc)&(ac-bd)\end{pmatrix}\right) = (ac-bd) + i(ad+bc)$$
$$= (a+ib)(c+id) = f\left(\begin{pmatrix}a&b\\-b&a\end{pmatrix}\right) f\left(\begin{pmatrix}c&d\\-d&c\end{pmatrix}\right).$$

Therefore f is a ring homomorphism. Clearly, f is surjective. Finally,

$$f\left(\begin{pmatrix}a&b\\-b&a\end{pmatrix}\right) = f\left(\begin{pmatrix}c&d\\-d&c\end{pmatrix}\right)$$

implies that a + ib = c + id, that is, a = c and b = d, that is,

$$\begin{pmatrix} a & b \\ -b & a \end{pmatrix} = \begin{pmatrix} c & d \\ -d & c \end{pmatrix}.$$

So f is injective too.

11.

(G,*) is a group, because it satisfies the following properties of a group.

Closure: For any $p,q \in G$, $p * q = p \circ c \circ q \in G$, since $c \in G$ and *G* is closed under the operation \circ .

Associativity: For any $p,q,r \in G$, since G is associative under the operation \circ , we get:

$$(p * q) * r = (p \circ c \circ q) \circ c \circ r = p \circ c \circ (q \circ c \circ r) = p * (q * r)$$

Identity: c^{-1} is the identity element. For any element $p \in G$, we get:

$$p * c^{-1} = p \circ c \circ c^{-1} = p \circ e_G = p$$
 and $c^{-1} * p = c^{-1} \circ c \circ p = e_G \circ p = p$

where, $e_G \in G$ is the identity element with respect to the group (G, \circ) .

Inverse: For any element $p \in G$, let $p' \in G$ be its inverse with respect to *. Now, by definition we should get $p * p' = c^{-1} = p' * p$.

$$\therefore p \circ c \circ p' = c^{-1} \quad \text{or} \quad p' \circ c \circ p = c^{-1} \quad \Rightarrow \quad p' = c^{-1} \circ p^{-1} \circ c^{-1}$$

where, p^{-1} is the inverse of p with respect to the operation \circ .