Additive identity: $(0,0)$. Multiplicative identity: $(0,1)$.
Suppose that λ is not a perfect square, and $(a, b) \odot(c, d)=(0,0)$, that is, $a d+b c=0$ and $b d+\lambda a c=0$. But then, $a(b d+\lambda a c)-b(a d+b c)=0$, that is, $\left(\lambda a^{2}-b^{2}\right) c=0$. Since λ is not a perfect square, we cannot have $\lambda a^{2}-b^{2}=0$ or $\lambda=(b / a)^{2}$. Therefore we must have $c=0$. This in turn implies $a d=0$ and $b d=0$. If $d=0$, we have $c=d=0$, whereas if $d \neq 0$, we have $a=b=0$. That is, A does not contain non-zero zero divisors.
Conversely, let $\lambda=\alpha^{2}$. As derived above, we see that $\lambda a^{2}-b^{2}=0$ is a necessary condition for the existence of non-zero zero divisors. We need to show that this condition is also sufficient. Taking $a=1$ and $b=\alpha$ satisfies the condition. We should also have $a d+b c=0$, that is, $\frac{a}{b}=-\frac{c}{d}$, that is, we can take $c=1$ and $d=-\alpha$. But then, $b d+\lambda a c=-\alpha^{2}+\lambda=0$. Since $(1, \alpha)$ and $(1,-\alpha)$ are non-zero elements of A, and $(1, \alpha) \odot(1,-\alpha)=(0,0)$, A is not an integral domain.
2. Let $a, b \in S$, such that $a \in T 1$ and $a \notin T 2, b \in T 2$ and $b \notin T 1$. Since $a, b \in S, a+b \in$ S. Since $S \subseteq T 1 \cup T 2, a+b \in T 1 \cup T 2$, which means $a+b$ must be either in T1 or T2 or both.
Let $a+b \in T 1$. Then, since $T 1$ is a subring, $(a+b)-a=(b+a)-a=b \in T 1$,
contradiction.
Let $a+b \in T 2$. Then, since T2 is a subring, $(a+b)-b=a \in T 2$, contradiction.
Thus, $\mathrm{S} \subseteq \mathrm{T} 1$ or $\mathrm{S} \subseteq \mathrm{T} 2$.
3.

Proof. Fix $a, b \in G$. Then $(a b)(a b)(a b)(a b)(a b)=(a b)^{5}=a^{5} b^{5}$ and cancelation of the endterms, or multiplication by inverses, implies that $(b a)^{4}=b(a b)(a b)(a b) a=a^{4} b^{4}$. Likewise, $(a b)(a b)(a b)=(a b)^{3}=a^{3} b^{3}$ which implies that

$$
\begin{equation*}
(b a)^{2}=a^{2} b^{2} \tag{1}
\end{equation*}
$$

again by cancelation. But $(b a)^{4}=(b a)^{2}(b a)^{2}=a^{2} b^{2} a^{2} b^{2}$ so that $a^{4} b^{4}=a^{2} b^{2} a^{2} b^{2}$. Cancelation again implies $a^{2} b^{2}=b^{2} a^{2}$ which is certainly getting us closer. Now, using Equation 1, but switching the roles of a and b, we have $(a b)^{2}=b^{2} a^{2}$, so that $a^{2} b^{2}=b^{2} a^{2}=(a b)^{2}=(a b)(a b)$. Cancelation of the end-terms one last time yields $a b=b a$ which proves that G is Abelian.
4.
[If] Let $h, h_{1}, h_{2} \in H$ and $k, k_{1}, k_{2} \in K$. We have $\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)=h_{1}\left(k_{1} h_{2}\right) k_{2}$. Since $K H=H K, k_{1} h_{2}=h_{3} k_{3}$ for some $h_{3} \in H$ and $k_{3} \in K$. Therefore $\left(h_{1} k_{1}\right)\left(h_{2} k_{2}\right)=h_{1}\left(h_{3} k_{3}\right) k_{2}=\left(h_{1} h_{3}\right)\left(k_{3} k_{2}\right) \in H K$. Next, consider $(h k)^{-1}=$ $k^{-1} h^{-1}$. Since $K H=H K$, we have $k^{-1} h^{-1}=h_{4} k_{4}$ for some $h_{4} \in H$ and $k_{4} \in K$, so $(h k)^{-1}=h_{4} k_{4} \in H K$.
[Only if] Take $h k \in H K$. Since $H K$ is a subgroup, we have $(h k)^{-1} \in H K$, that is, there exist $h_{1} \in H$ and $k_{1} \in K$ such that $(h k)^{-1}=h_{1} k_{1}$. But then, $h k=\left(h_{1} k_{1}\right)^{-1}=k_{1}^{-1} h_{1}^{-1} \in K H$. That is, $H K \subseteq K H$.
Conversely, take $k h \in K H$. We have $h^{-1} \in H$ and $k^{-1} \in K$, so $h^{-1} k^{-1} \in H K$. Since $H K$ is a subgroup, we have $\left(h^{-1} k^{-1}\right)^{-1}=k h \in H K$. Therefore $K H \subseteq H K$.

Practice Problems

5. Proof: To show that H is a subgroup, it is sufficient to show closure property and the existence of inverse of all elements.

Closure: Let $\mathrm{p} \in \mathrm{H}, \mathrm{q} \in \mathrm{H}$. Then $\mathrm{p} \circ \mathrm{g}=\mathrm{g} \circ \mathrm{p}, \mathrm{q} \circ \mathrm{g}=\mathrm{g} \circ \mathrm{q}$ for all g in G . Then $(p \circ q) \circ g=p \circ(q \circ g)=p \circ(g \circ q)=(p \circ g) \circ q=(g \circ p) \circ q=g \circ(p \circ q)$, which shows that $p \circ q \in H$.
Inverse: Let $p \in H$. Then $p \circ g=g \circ p$ for all g in G.
$\Rightarrow p^{-1} \circ(p \circ g) \circ p^{-1}=p^{-1} \circ(g \circ p) \circ p^{-1}$
$\Rightarrow g \circ p^{-1}=p^{-1} \circ g$ for all g in G.
Thus, $\mathrm{p}^{-1} \in \mathrm{H}$.
Hence, H is a subgroup.
6.

Reflexivity Let $x \in G$; we want to show that $x R x$, that is, $x x^{-1} \in H$. This is true, because $x x^{-1}=1 \in H$.

Simmetry Let $x, y \in G$ and suppose $x R y$. We want to show that $y R x$, that is, $y x^{-1} \in H$. By hypothesis, $x y^{-1} \in H$, so, by the properties of a subgroup, $\left(x y^{-1}\right)^{-1} \in H$; but, by general rule, $\left(x y^{-1}\right)^{-1}=y x^{-1}$, so we are done.

Transitivity Let $x, y, z \in G$ and suppose $x R y$ and $y R z$. We want to show that $x R z$, that is $x z^{-1} \in H$. We know that $x y^{-1} \in H$ and $y z^{-1} \in H$, so $\left(x y^{-1}\right)\left(y z^{-1}\right) \in H$. But $\left(x y^{-1}\right)\left(y z^{-1}\right)=x z^{-1}$, so we are done.
7. Associativity: Let $\left(g_{1}, h_{1}\right),\left(g_{2}, h_{2}\right)$ and $\left(g_{3}, h_{3}\right) \in G \times H$. Then $\left(\left(g_{1}, h_{1}\right) \cdot\left(g_{2}, h_{2}\right)\right) \cdot\left(g_{3}, h_{3}\right)=$ $\left(g_{1} \circ g_{2}, h_{1}{ }^{*} h_{2}\right) \cdot\left(g_{3}, h_{3}\right)=\left(\left(g_{1} \circ g_{2}\right) \circ g_{3},\left(h_{1}{ }^{*} h_{2}\right)^{*} h_{3}\right)=\left(g_{1} O\left(g_{2} O g_{3}\right), h_{1}{ }^{*}\left(h_{2}{ }^{*} h_{3}\right)\right)$.
$\left(g_{1}, h_{1}\right) \cdot\left(\left(g_{2}, h_{2}\right) \cdot\left(g_{3}, h_{3}\right)\right)=\left(g_{1}, h_{1}\right) \cdot\left(g_{2} 0 g_{3}, h_{2}{ }^{*} h_{3}\right)=\left(g_{1} \mathrm{O}\left(g_{2} \mathrm{O} g_{3}\right), h_{1}{ }^{*}\left(h_{2}{ }^{*} h_{3}\right)\right)$.
Hence, ($\mathrm{G} \times \mathrm{H}$, .) is associative.
Identity: Let e_{G} be the identity element of G and e_{H} be the identity element of H . Then, $(\mathrm{g}, \mathrm{h}) .\left(\mathrm{e}_{\mathrm{G}}, \mathrm{e}_{\mathrm{H}}\right)=\left(\mathrm{go} e_{G}, \mathrm{~h}^{*} \mathrm{e}_{\mathrm{H}}\right)=(\mathrm{g}, \mathrm{h})$ and $\left(\mathrm{e}_{\mathrm{G}}, \mathrm{e}_{\mathrm{H}}\right) \cdot(\mathrm{g}, \mathrm{h})=\left(\mathrm{e}_{\mathrm{G}} \circ \mathrm{g}, \mathrm{e}_{\mathrm{H}}^{*} \mathrm{~h}\right)=(\mathrm{g}, \mathrm{h})$ for all $(\mathrm{g}$, $h) \in G \times H$. Therefore, $\left(e_{G}, e_{H}\right)$ is the identity element of $(G \times H,$.$) .$
Inverse: Let g^{-1} be the inverse of g in G and h^{-1} be the inverse of h in H . Then,
$(\mathrm{g}, \mathrm{h}) \cdot\left(\mathrm{g}^{-1}, \mathrm{~h}^{-1}\right)=\left(\mathrm{g} \circ \mathrm{g}^{-1}, \mathrm{~h}^{*} \mathrm{~h}^{-1}\right)=\left(\mathrm{e}_{\mathrm{G}}, \mathrm{e}_{\mathrm{H}}\right)$ and $\left(\mathrm{g}^{-1}, \mathrm{~h}^{-1}\right) .(\mathrm{g}, \mathrm{h})=\left(\mathrm{g}^{-1} \circ \mathrm{~g}, \mathrm{~h}^{-1 *} \mathrm{~h}\right)=\left(\mathrm{e}_{\mathrm{G}}, \mathrm{e}_{\mathrm{H}}\right)$.
Therefore, $\left(g^{-1}, h^{-1}\right)$ is the inverse of (g, h) in $(G \times H,$.$) .$
8. For R to be a ring, distributive property of . over + must hold. We show that it does not hold.
Consider $f(n)=n+1, g(n)=1, h(n)=1$ for all $n \in Z$. Then $(f .(g+h))(n)=f(g(n)+h(n))=$ $f(1+1)=f(2)=3$.
$f(g(n))+f(h(n))=f(1)+f(1)=2+2=4$.
Thus, R is not a ring.
9. b. $[\Rightarrow$] Take non-zero elements $a, b \in R$. Then a and b are non-zero (constant) polynomials. Since $R[x]$ is an integral domain, $a b$ is not the zero polynomial. But $a b$ is again a constant polynomial. It follows that $a b 6=0$.
$[\xi]$ Suppose that there exist $A(x), B(x) \in R[x]$ such that $A(x) B(x)=0, A(x) 6=0$, and $B(x) 6=0$. Write $A(x)=a 0+a 1 x+a 2 x 2+\cdots+a d x d$ with $a d 6=0$ and $d>0$, and $B(x)=b 0+b 1 x+b 2 x 2$ $+\cdots+$ bexe with be $6=0$ and $e>0$. Since $A(x) B(x)=0$, we must be $=0$. This implies that R is not an integral domain.
10. a.

Since \mathbb{A} is a subset of the ring of 2×2 matrices with real entries, it suffices to show closure under addition, multiplication, and additive inverse in order to prove that \mathbb{A} is a ring.

$$
\begin{aligned}
& \left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)+\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)=\left(\begin{array}{cc}
(a+c) & (b+d) \\
-(b+d) & (a+c)
\end{array}\right) \\
& \left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)=\left(\begin{array}{cc}
(a c-b d) & (a d+b c) \\
-(a d+b c) & (a c-b d)
\end{array}\right) \\
& -\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)=\left(\begin{array}{cc}
(-a) & (-b) \\
-(-b) & (-a)
\end{array}\right)
\end{aligned}
$$

For commutativity, note that

$$
\begin{aligned}
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right) & =\left(\begin{array}{cc}
(a c-b d) & (a d+b c) \\
-(a d+b c) & (a c-b d)
\end{array}\right) \\
& =\left(\begin{array}{cc}
(c a-d b) & (d a+c b) \\
-(d a+c b) & (c a-d b)
\end{array}\right)=\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right) .
\end{aligned}
$$

Finally, the 2×2 identity matrix is in \mathbb{A}.
b.

Define the map $f: \mathbb{A} \rightarrow \mathbb{C}$ as

$$
f\left(\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\right)=a+\mathrm{i} b .
$$

We have

$$
\begin{aligned}
f\left(\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)+\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)\right) & =f\left(\left(\begin{array}{cc}
(a+c) & (b+d) \\
-(b+d) & (a+c)
\end{array}\right)\right)=(a+c)+\mathrm{i}(b+d) \\
& =(a+\mathrm{i} b)+(c+\mathrm{i} d)=f\left(\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\right)+f\left(\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)\right) & =f\left(\left(\begin{array}{cc}
(a c-b d) & (a d+b c) \\
-(a d+b c) & (a c-b d)
\end{array}\right)\right)=(a c-b d)+\mathrm{i}(a d+b c) \\
& =(a+\mathrm{i} b)(c+\mathrm{i} d)=f\left(\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\right) f\left(\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)\right) .
\end{aligned}
$$

Therefore f is a ring homomorphism. Clearly, f is surjective. Finally,

$$
f\left(\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)\right)=f\left(\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right)\right)
$$

implies that $a+\mathrm{i} b=c+\mathrm{i} d$, that is, $a=c$ and $b=d$, that is,

$$
\left(\begin{array}{cc}
a & b \\
-b & a
\end{array}\right)=\left(\begin{array}{cc}
c & d \\
-d & c
\end{array}\right) .
$$

So f is injective too.
11.
$(G, *)$ is a group, because it satisfies the following properties of a group.
Closure: For any $p, q \in G, p * q=p \circ c \circ q \in G$, since $c \in G$ and G is closed under the operation \circ.
Associativity: For any $p, q, r \in G$, since G is associative under the operation \circ, we get:

$$
(p * q) * r=(p \circ c \circ q) \circ c \circ r=p \circ c \circ(q \circ c \circ r)=p *(q * r)
$$

Identity: c^{-1} is the identity element. For any element $p \in G$, we get:

$$
p * c^{-1}=p \circ c \circ c^{-1}=p \circ e_{G}=p \quad \text { and } \quad c^{-1} * p=c^{-1} \circ c \circ p=e_{G} \circ p=p
$$

where, $e_{G} \in G$ is the identity element with respect to the group (G, \circ).
Inverse: For any element $p \in G$, let $p^{\prime} \in G$ be its inverse with respect to $*$. Now, by definition we should get $p * p^{\prime}=c^{-1}=p^{\prime} * p$.

$$
\therefore p \circ c \circ p^{\prime}=c^{-1} \quad \text { or } \quad p^{\prime} \circ c \circ p=c^{-1} \quad \Rightarrow \quad p^{\prime}=c^{-1} \circ p^{-1} \circ c^{-1}
$$

where, p^{-1} is the inverse of p with respect to the operation \circ.

