CS21201 Discrete Structures
 Practice and tutorial problems

Algebraic Structures

1. Let $A=Z \times Z$, and λ a fixed (constant) positive integer. Define two operations \oplus and \odot on A as $(a, b) \oplus(c, d)=(a+c, b+d),(a, b) \odot(c, d)=(a d+b c, b d+\lambda a c)$. Show that A is a commutative ring with identity under these two operations. You do not have to verify the ring axioms, but only mention the additive and multiplicative identities in A (no need to prove their identity properties). Also, prove that A is an integral domain if and only if λ is not a perfect square.
2. Let R be a ring, and $S, T 1$, $T 2$ subrings of R. If $S \subseteq T 1 \cup T 2$, prove that $S \subseteq T 1$ or $S \subseteq T 2$.
3. Let G be a group. If $(a b)^{3}=a^{3} b^{3}$ and $(a b)^{5}=a^{5} b^{5}$ for all a, b in G, prove that G is abelian.
4. Let H and K be two subgroups of a (multiplicative) group G. Define $H K=\{h k \mid h \in H, k$ $\in K\}$. Define $K H$ analogously. Prove that $H K$ is a subgroup of G if and only if $H K=K H$.

Practice Problems

5. Let G be a group, and $\mathrm{H}=\{\mathrm{a} \in \mathrm{G} \mid \mathrm{ag}=$ ga for all $\mathrm{g} \in \mathrm{G}\}$. Prove that H is a subgroup of G .
6. Let G be a group, and H be a subgroup of G. For $x, y \in G$, define a relation R by "xRy if and only if $x y^{-1} \in \mathrm{H}^{\prime}$. Prove that R is an equivalence relation.
7. Let (G, o) and $\left(H,{ }^{*}\right)$ be groups. The binary operation. is defined on $G \times H$ by $\left(g_{1}\right.$, $\left.h_{1}\right) \cdot\left(g_{2}, h_{2}\right)=\left(g_{1} O_{2}, h_{1}{ }^{*} h_{2}\right)$. Prove that $(G \times H,$.$) is a group.$
8. Let R be the set of all functions $Z \rightarrow Z$. For $f, g \in R$, define $(f+g)(n)=f(n)+g(n)$ and $(f g)(n)=f(g(n))$ for all $n \in Z$. Prove/Disprove: R is a ring under these two operations.
9. Let R be a commutative ring with identity, and $R[x]$ the set of univariate polynomials with coefficients from R. Define the addition and multiplication of polynomials in the usual way.
(a) Prove that $R[x]$ is a ring.
(b) Prove that $R[x]$ is an integral domain if and only if R is an integral domain.
10.

Consider the following set of 2×2 matrices with real entries: $\mathbb{A}=\left\{\left.\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right) \right\rvert\, a, b \in \mathbb{R}\right\}$.
(a) Prove that \mathbb{A} is a commutative ring with identity.
(b) Prove that A is isomorphic to the ring C of complex numbers.
11. Let $\left(\mathrm{G},{ }^{\circ}\right)$ be a group, and c a fixed element of G . Define a binary operation $*$ on G by a $*$ $b=a \circ c \circ b$ for all $a, b \in G$. Prove that $(G, *)$ is a group, clearly showing that all the properties of a group are satisfied.

