ALGORITHMS TUTORIAL 1

(Complexity and Order)
Date: Sep 5 — September - 2020

1. Put the following functions in order from lowest to highest in terms of their 6 classes. (Some of the
functions may be in the same 0 class. Indicate that on your list also.)

(@ fi(n) =n!

(b) fa(n)=n2

(c) f3(n)=1000

(d) f4(n) = vn(n +log(n))
(e) fs(n)=3"

H fe(n) = 2(n+2)

(g) f7(n) =0.00001n

2. Prove whether or not each of the following statements are true. For those that you believe are
false, prove this by giving a counterexample (i.e. particular functions for f(n) and g(n) for which
the given statement is not true). For those that you believe are true, use the formal definitions of
big-oh, big-Q, and big-© to prove it. In all problems, you are given that for all n, f(n) > 0 and
g(n) > 0.

(@) If f(n) = O(g(n)) then g(n) = O(f(n))
(b) min(f(n), g(n)) = O(f(n) + g(n))
(©) If f(n) = Q(g(n)) then g(n) = O(f(n))

3. Give an exact solution to the following recurrences. Then use induction to prove that your solution
is correct.

(@ T(n)=3T(n/2) +n2 T(1) =1 forn > 0 a power of 2

4. What is the asymptotic upper bound on the time complexity for the following code fragment? (For
large values on n and assume that n is of the form 221

count = 1; //for n>=2
while (n>2)
{
if (count % 2 == 1)
{
at+;
n = pow(n, 1.2);
}
else
{
b++;
n = pow(n, 0.4166667);



count++;

. Give an asymptotically tight solution to the recurrence.
Tn) =9T(n/3)+n

. Propose an algorithm for computing 3™ using only ©(log(n)) instructions. Show that your algo-
rithm actually runs in ©(log(n)) time.

. Give a pseudo code for and matrix multiplication algorithm. How many instructions are executed
when we multiply n x m matrix A with m x r matrix B ?

. Give an example of two positive real valued functions f(n) and g(n) of natural numbers that satisfy
the property that f(n) is not O(g(n)) and g(n) is also not O(f(n)).

. Write down the recurrence relation for the running time T(n) of the following code. What is the
time complexity in big-© notation?

float useless (A){
n = A.length;
if (n==1){
return A[O0]; } // let Al,A2 be arrays of size n/2
for (i=0; i <= (n/2)—1; i++){
Al[i] = A[il;
A2[i] = A[n/2 + i];
}
for (i=0; i<=m/2)—1; i++){
for (j=i+1; j<=m/2)—1; j++){
if (A1[i] == A2[j])
A2[j] = 0;
I
bl = useless(Al);
b2 = useless (A2);
return max(bl,b2);



