CS21003 ALGORITHMS-1
(Solution : Greedy Strategy)
Date: October 17, 2020

Question 1:

Put as many songs (from song 1 to song g) on the 1st CD as possible without exceeding the m minute

limit.

Then iteratively repeat this procedure for the remaining CDs. Since this just requires keeping

a running sum in which each of the n song lengths are included once, clearly the above is an O(n)
algorithm.

Question 2:

input: (al,dl), (a2,d2), ...

Convert input in individual event pair : (time,arrival/departure)
Sort all the events pair based on time (first element of pair)
max = 0

currentGuest = 0

For all events pairs do

— If event[second] element == arrival then
currentGuest-++

— else currentGuest—

— If currentGuest > max then max = currentGuest

Return max

Time Complexity: O(nlogn)

Question 3:

we can defeat the it wight with Drogon (D), Rhaegal (R) or Viserion (V).
so we have the following equations:

cost[i,D] = min(cost[i-1,R], cost[i-1,V]

+ cost of defeating i with D.

)
cost[i,R] = min(cost[i-1,D], cost[i-1,V]) + cost of defeating i with R.
)

cost[i,V] = min(cost[i-1,D], cost[i-1,R]

+ cost of defeating i with V.

Final Min Cost = min (cost[n,D], cost[n,R], cost[n,V])
Time Complexity : O(n)

Question 4:

Q3.Here 1s a greedy algorithm for this problem. Start at the western end of the road and
hegin moving east until the first moment when there's a honse h exactly fonr miles to the
west. We place a base station at this point (if we went any farther east without placing
a base station, we wouldn't cover fi). We then delete all the houses covered by this base
station, and iterate this process on the remaining honses.

Here's another way to view this algorithm. For any point on the road, define its position
to be the number of miles it is from the western end. We place the first base station at the
easternmost (L.e. largest) position s; with the property that all houses between 0 and s, will
be covered by s;. In general, having placed {s1,...,s;}, we place base station i + 1 at the
largest position &9 with the property that all houses between s; and s, will be covered
b}-’ & and Sip1-

Let § = {sy..... s} denote the full set of base station positions that our greedy algorithm
places, and let T = {t;..... %, } denote the sef of base station positions in an optimal solution,
sorted in increasing order (i.e. from west to east). We must show that b = m.

We do this by showing a sense in which our greedy solution S “stays ahead” of the optimal
solution T'. Specifically, we claim that s; = #; for each i, and prove this by induction. The
claim is true for ¢ = 1 sinece we go as far as possible to the east hefore placing the first hase
station. Assume now it is true for some value ¢ > 1, this means that our algorithm’s first @
centers {8y, ..., 8} cover all the houses covered by the first i centers {#;...., 4}, As a result,
if we add ;4 to {sy,...,s:}, we will not leave any house between s; and £, uncovered. But
the (i + 1) step of the greedy algorithm chooses s,41 to be as large as possible subject to
the condition of covering all houses between s; and s;; so we have s, = £;;;. This proves
the claim by induction.

Finally, if & > m, then {s,...,s,} fails to cover all houses. DBut s, > f,, and so
{t1, ..., tm} = 1 also fails to cover all houses, a contradiction.

Question 5:

Q4.An optimal algorithm 1s to schedule the jobs i decreasing order of w;/i;. We prove the
aptimality of this algorithm by an exchange argnment.

Thus, consider any other schedule. As is standard in exchange arguments, we observe
that this schedule must contam an tnversion — a pair of jobs ¢, 7 for which @ comes belore
j in the alternate solution, and j comes before i in the greedy solution. Further, in fact,
there must be an adjacent such pair 4, j. Note that for this pair, we have w;/t; = w;/t;, by
the definition of the greedy schedule. If we can show that swapping this pair 4, j does not
increase the weighted sum of completion times, then we can iteratively do this nntil there are
no more inversions, arriving at the greedy schedule without having increased the function
we're trying to minimize. It will then follow that the greedy algorithm is optimal.

So consider the effect of swapping ¢ and 3. The completion times of all other jobs remain
the same. Suppose the completion time of the job before ¢ and j is €', Then before the
swap, the contribution of ¢ and j to the total sum was w(C + ;) + w;(C + ¢; +1;), while
after the swm it is w; (C + £;) + w;(C + £ + t;). The difference between the value after the
swap, compared to the value before the swap is (canceling terms i common between the
two expressions) wyt; — w;t;. Since wy/t; = w;/t;, this difference is bounded above by (1, and
so the total weighted sum of completion times does not inerease due to the swap, as desired

Question 6:

Q5.Let Iy,.... 1, denote the n mtervals. We say that an I;-restricted solution 1s one that
contains the interval T,

Here is an algorithm, for fixed j, to compute an [;-restricted solution of maximum size.
Let & be a pomt contamed m [;. First delete 1; and all miervals that overlap 1t. The
remaining intervals do not contain the point @, so we can “eat” the time-line at = and
produce an instance of the Interval Scheduling Problem from class. We solve this in O{n)
time, assuming that the intervals are ordered by ending time.

Now, the algorithm for the full problem is to compnte an I;-restricted solution of maxi-
mum size for each j = 1,...,n. This takes a total time of O(n?). We then pick the largest
of these solutions, and claim that it is an optimal solution. To see this, consider the optimal
solution to the full problem, consisting of a set of imtervals S. Since n > 0, there is some
interval [; € 5; but then 5 is an optimal /j-restricted solution, and so our algorithm will
produce a solution at least as large as 5.

Question 7:

Q1. Say n boxes arrive in the order by, ..., b,. Say each box b; has a positive weight w;, and
the maximom weight each truck can carry is W, To pack the hoxes into N tracks preserving
the order is to assign each box to one of the trucks 1,..., N so that:

e No truck is overloaded: the total weight of all boxes in each truck is less or equal to
W,

e The order of arrivals is preserved: if the box b; is sent before the box b; (i.e. box by is
assigned to truck &, box b; is assigned to truck y, and & < y) then it must be the case
that b; has arrived to the company earlier than b; (i.e. i < 7).

We prove that the greedy algorithm uses the fewest possible trucks by showing that it
“stays ahead” of any other solution. Specifically, we consider any other solution and show
the following. If the greedy algorithin fits boxes by, by, ..., b; into the first & trocks, and the
other solution fits by, ..., b; into the first & trucks, then i < j. Note that this implies the
oplimality of the greedy algorithim, by selting & to be the munber of trucks used by the
greedy algorithm,

We will prove this claim by induction on & The case & — 1 is clear; the greedy algorithm
lils as miany boxes as possible into the frst track. Now, asswming it holds Tor & — 1 Lhe
greedy algorithm fits j’ boxes into the first & — 1. and the other solution fits #* < j'. Now,
for the k™" truck, the alternate solntion packs in by, q,.... 5. Thus, since j' > i/, the greedy
algorithim is able at least to [it all the boxes by, ... b into the EP truck, and it can
potentially fit more. This completes the induction step, the proof of the claim, and hence
the proof of optimality of the greedy algorithm.

