Binary Decision Diagrams (BDD)

Testing & Verification
Dept. of Computer Science & Engg, IIT Kharagpur

Pallab Dasgupta
Professor, Dept. of Computer Science & Engg.,
Professor-in-charge, AVLSI Design Lab,
Indian Institute of Technology Kharagpur
Contents

- Motivation for Decision diagrams
- Binary Decision Diagrams
- ROBDD
- Effect of Variable Ordering on BDD size
- BDD operations
- Encoding state machines
- Reachability Analysis using OBDDs
Sample Analysis Task

- **Logic Circuit Comparison**
 - Do circuits compute identical function?
 - Basic task of formal hardware verification
 - Compare new design to “known good” design

![Logic Circuit Diagram]

© Pallab Dasgupta, Dept. of Computer Sc & Engg, IIT Kharagpur
Solution by Combinatorial Search

- **Satisfiability Formulation**
 - Search for input assignment giving different outputs

- **Branch & Bound**
 - Assign input(s)
 - Propagate forced values
 - Backtrack when cannot succeed

- **Challenge**
 - Must prove all assignments fail
 - Typically explore significant fraction of inputs
 - Exponential time complexity
Another Approach

- **Generate Complete Representation of Circuit Function**
 - Compact, canonical form
 - Functions equal if and only if representations identical
 - Never enumerate explicit function values
 - Exploit structure & regularity of circuit functions
Decision Structure

Truth Table

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Decision Tree

- Vertex represents decision
- Follow green (dashed) line for value 0
- Follow red (solid) line for value 1
- Function value determined by leaf value.
Binary Decision Diagram

- DAG representation of Boolean functions
- Operations on Boolean functions can be implemented as graph algorithms on BDDs
- Tasks in many problem domains can be expressed entirely in terms of BDDs
- BDDs have been useful in solving problems that would not be possible by more traditional techniques.
Binary Decision Diagram (BDD)

- Each non-terminal vertex v is labeled by a variable $\text{var}(v)$ and has arcs directed toward two children:
 - $\text{lo}(v)$ (dotted line) corresponding to the case where the variable is assigned 0
 - $\text{hi}(v)$ (solid line) where the variable is assigned 1

- Each terminal vertex is labeled as 0 or 1

- For a given assignment to the variables, the value of the function is determined by tracing the path from root to a terminal vertex, following the branches appropriately
BDDs and Shannon’s Expansion

- Shannon’s Expansion: \(f = x f_x + x' f_{x'} \)

- BDD represents recursive application of Shannon’s expansion
Ordered Binary Decision Diagram (OBDD)

- Assign arbitrary total ordering to variables
 - e.g. $x_1 < x_2 < x_3$
- Variables must appear in ascending order along all paths

Properties
- No conflicting variable assignments along path
- Simplifies manipulation
Reduction Rule #1

Merge equivalent leaves

Eliminate all but one terminal vertex with a given label and redirect all arcs into the eliminated vertices to the remaining.
Reduction Rule #2

Merge isomorphic nodes

If non-terminal vertices u and v have $\text{var}(u) = \text{var}(v)$, $\text{lo}(u) = \text{lo}(v)$ and $\text{hi}(u) = \text{hi}(v)$, eliminate one of them and redirect all incoming arcs to the other.
Eliminate Redundant Tests

If non-terminal vertex \(v \) has \(\text{lo}(v) = \text{hi}(v) \), eliminate \(v \) and redirect all incoming arcs to \(\text{lo}(v) \).
Reduced OBDD (ROBDD)

- Canonical representation of Boolean function
- For the same variable ordering, two functions equivalent if and only if graphs isomorphic
 - Can be tested in linear time

Initial Graph

Reduced Graph

\((x_1 + x_2) \cdot x_3\)
Some Example Functions

Constants
- 0: Unique unsatisfiable function
- 1: Unique tautology

Typical Function
- \((x_1 \lor x_2) \land x_4\)
- No vertex labeled \(x_3\)
 - independent of \(x_3\)
- Many subgraphs shared

Variable
- Treat variable as function

Odd Parity
- Linear representation
Circuit Functions

- **Functions**
 - All outputs of 4-bit adder
 - Functions of data inputs

- **Shared Representation**
 - Graph with multiple roots
 - 31 nodes for 4-bit adder
 - 571 nodes for 64-bit adder
 - Linear Growth
Effect of Variable Ordering on ROBDD Size

\[(a_1 \land b_1) \lor (a_2 \land b_2) \lor (a_3 \land b_3)\]

Good Ordering

\[(a_1 < b_1 < a_2 < b_2 < a_3 < b_3)\]

Linear Growth

Bad Ordering

\[(a_1 < a_2 < a_3 < b_1 < b_2 < b_3)\]

Exponential Growth
Analysis of Ordering Example

\[(a_1 \land b_1) \lor (a_2 \land b_2) \lor (a_3 \land b_3)\]
Selecting a good Variable Ordering

- **Intractable Problem**
 - Even when problem represented as OBDD

- **A good variable ordering should use**
 - Local computability
 - Ordering based on power to control output

- **Application-Based Heuristics**
 - Exploit characteristics of application
 - Ordering for functions of combinational circuit
 - Traverse circuit graph depth-first from outputs to inputs
 - Assign variables to primary inputs in order encountered
Dynamic Variable Ordering

- Rudell, ICCAD ‘93

Concept
- Variable ordering changes as computation progresses
 - Typical application involves long series of BDD operations
- Proceeds in background, invisible to user

Implementation
- When approach memory limit, attempt to reduce
 - Garbage collect unneeded nodes
 - Attempt to find better order for variables
- Simple, greedy reordering heuristics
Dynamic Reordering By Sifting

- Choose candidate variable
- Try all positions in ordering
 - Repeatedly swap with adjacent variable
- Move to best position found

Best Choices
Sample Function Classes

<table>
<thead>
<tr>
<th>Function Class</th>
<th>Best</th>
<th>Worst</th>
<th>Ordering Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU (Add/Sub)</td>
<td>linear</td>
<td>exponential</td>
<td>High</td>
</tr>
<tr>
<td>Symmetric</td>
<td>linear</td>
<td>quadratic</td>
<td>None</td>
</tr>
<tr>
<td>Multiplication</td>
<td>exponential</td>
<td>exponential</td>
<td>Low</td>
</tr>
</tbody>
</table>

General Experience
- Many tasks have reasonable OBDD representations
- Algorithms remain practical for up to 100,000 node OBDDs
- Heuristic ordering methods generally satisfactory
BDD Operations

- **Strategy**
 - Represent data as set of OBDDs
 - Identical variable orderings
 - Express solution method as sequence of symbolic operations
 - Implement each operation by OBDD manipulation

- **Algorithmic Properties**
 - Arguments are OBDDs with identical variable orderings.
 - Result is OBDD with same ordering.
 - “Closure Property”
The APPLY Operation

- Given argument functions f and g, and a binary operator \(<op>\), APPLY returns the function \(f <op> g\)

- Works by traversing the argument graphs depth first

- Algebraic operations “commute” with the Shannon expansion for any variable x
 - \(f <op> g = x' (f|_{x=0} <op> g|_{x=0}) + x ((f|_{x=1} <op> g|_{x=1})\)
The Apply Algorithm

- Consider a function f represented by a BDD with root vertex r_f
- The restriction of f with respect to a variable x such that $x \leq \text{var}(r_f)$ can be computed as:

 \[f \big|_{x=b} = r_f, \quad x < \text{var}(r_f) \]

 \[= \text{lo}(r_f), \quad x = \text{var}(r_f) \text{ and } b = 0 \]

 \[= \text{hi}(r_f), \quad x = \text{var}(r_f) \text{ and } b = 1 \]

- The algorithm for APPLY utilizes the above restriction definition.
The Apply Algorithm

- Each evaluation step is identified by a vertex from each of the argument graphs.

- Suppose functions f and g are represented by root vertices \(r_f \) and \(r_g \).

- If \(r_f \) and \(r_g \) are both terminal vertices, terminate and return an appropriately labeled terminal vertex e.g. \((A_4, B_3)\) and \((A_5, B_4)\).
The Apply algorithm

- Let \(x \) be the splitting variable

 \((x = \min(\text{var}(r_f), \text{var}(r_g)) \)

- BDDs for \((f|_{x=0} <\text{op}> g|_{x=0}) \) and \((f|_{x=1} <\text{op}> g|_{x=1}) \) are computed by recursively evaluating the restrictions of \(f \) and \(g \) for value 0 and for value 1
Example

- Initial evaluation with vertices A_1, B_1 causes recursive evaluations with vertices A_2, B_2 and A_6, B_5
Apply operation

- Reaching a terminal with a dominant value (e.g. 1 for OR, 0 for AND) terminates recursion and returns an appropriately labeled terminal (A_5, B_2 and A_3, B_4)

- Avoid multiple recursive calls on the same pair of arguments by a hash table (A_3, B_2 and A_5, B_2)
Apply operation

- Each evaluation step returns a vertex in the generated graph.
- Apply reduction before merging the result.
- Complexity of operation: $O(m_f \times m_g)$ where m_f and m_g represent the number of vertices in the BDDs for f and g respectively.
Example

Recursive Calls

A₁,B₁
A₂,B₂
A₆,B₂
A₆,B₅
A₃,B₂
A₅,B₂
A₃,B₄
A₄,B₃
A₅,B₄

Without Reduction

With Reduction

A₅,B₄
A₆,B₅
A₃,B₄
A₅,B₂
A₆,B₂
A₃,B₂
A₄,B₃
A₅,B₄

a
b
c
d
0
1
1
C₁
C₂
C₃
C₄
C₅
C₆
Concept

- Effect of setting function argument x_i to constant k (0 or 1).
- Also called Cofactor operation

F_X equivalent to $F [x = 1]$
F_X equivalent to $F [x = 0]$

$F [x_i = k]$
Restriction Algorithm

Implementation

- Depth-first traversal
- Redirect any arc into vertex v having $\text{var}(v) = x$ to point to $\text{hi}(v)$ for $x = 1$ and $\text{lo}(v)$ for $x = 0$
- Complexity linear in argument graph size
Restriction Execution Example

Argument F

\[
\begin{align*}
\text{a} & \quad \text{b} & \quad \text{c} & \quad \text{d} \\
0 & \quad 1 & \quad 0 & \quad 1
\end{align*}
\]

Restriction $F[b=1]$

\[
\begin{align*}
\text{a} & \quad \text{b} & \quad \text{c} & \quad \text{d} \\
0 & \quad 1 & \quad 0 & \quad 1
\end{align*}
\]

Reduced Result

\[
\begin{align*}
\text{c} & \quad \text{d} \\
0 & \quad 1
\end{align*}
\]
Derived Operations

- **Express as combination of Apply and Restrict**

- **Preserve closure property**
 - Result is an OBDD with the right variable ordering

- **Polynomial complexity**
 - Although can sometimes improve with special implementations
Variable Quantification

- Eliminate dependency on some argument through quantification
- Combine with AND for universal quantification.
Digital Applications of BDDs

- **Verification**
 - Combinational equivalence (UCB, Fujitsu, Synopsys, ...)
 - FSM equivalence (Bull, UCB, MCC, Colorado, Torino, ...)
 - Symbolic Simulation (CMU, Utah)
 - Symbolic Model Checking (CMU, Bull, Motorola, ...)

- **Synthesis**
 - Don’t care set representation (UCB, Fujitsu, ...)
 - State minimization (UCB)
 - Sum-of-Products minimization (UCB, Synopsys, NTT)

- **Test**
 - False path identification (TI)
Some Popular BDD packages

- CUDD (Colorado University Decision Diagram)
- TUD BDD package (TUDD)
- BUDDY
- CMU BDD

Informations about the above BDD packages and some more details can be found at http://www.bdd-portal.org/
Finite State System Analysis

- Systems Represented as Finite State Machines
 - Analysis Tasks
 - State reachability
 - State machine comparison
 - Temporal logic model checking

- Traditional Methods Impractical for Large Machines
 - Polynomial in number of states
 - Number of states exponential in number of state variables.
 - Example: single 32-bit register has 4,294,967,296 states!
Symbolic FSM Representation

- Represent set of transitions as function $\delta(Old, New)$
 - Yields 1 if can have transition from state Old to state New

- Represent as Boolean function
 - Use variables for encoding states
Symbolic FSM Representation

Nondeterministic FSM

Symbolic Representation

\[o_1, o_2 \] encoded old state

\[n_1, n_2 \] encoded new state
Reachability Analysis

• Compute set of states reachable from initial state \((Q_0 = 00)\)

• Represent as Boolean function \(R(S)\)

Given

new state → \(\delta\) → 0/1
old state

Compute

state → \(R\) → 0/1

Initial

\(R_0\)

\(Q_0\)
Breadth-First Reachability Analysis

- R_i – set of states that can be reached in i transitions
- Reach fixed point when $R_n = R_{n+1}$
 - Guaranteed since finite state
Iterative Computation

- R_{i+1} – set of states that can be reached within $i + 1$ transitions
 - Either in R_i
 - or single transition away from some element of R_i
Example: Computing R_1 from R_0

$$\exists \text{ Old } [R_0(\text{Old}) \land \delta(\text{Old}, \text{New})]$$
What’s good about OBDDs?

- **Powerful Operations**
 - Creating, manipulating, testing
 - Each step polynomial complexity
 - Graceful degradation
 - Maintain “closure” property
 - Each operation produces form suitable for further operations

- **Generally Stay Small Enough**
 - Especially for digital circuit applications
 - Given good choice of variable ordering

- **Weak Competition**
What’s not good about OBDDs?

- **Doesn’t Solve All Problems**
 - Can’t do much with multipliers
 - Some problems just too big
 - Weak for search problems

- **Must be Careful**
 - Choose good variable ordering
 - Some operations too hard
Zero Suppressed BDD’s - ZBDD’s

- ZBDD’s were invented by Minato to efficiently represent sparse sets. They have turned out to be extremely useful in implicit methods for representing primes (which usually are a sparse subset of all cubes).

- Different reduction rules.
Zero Suppressed BDD’s - ZBDD’s

- **ZBDD Reduction Rule**: eliminate all nodes where the then node points to 0. Connect incoming edges to else node.

- For ZBDD, equivalent nodes can be shared as in case of BDDs.

![ZBDD Diagram]
Evaluating a MTBDD for a given variable assignment is similar to that in case of BDD.

Very inefficient for representing functions yielding values over a large range.
EVBDD – Edge value BDD

- EVBDDs can be used when the number of possible function values are too high for MTBDDs.

- Evaluating a EVBDD involves tracing a path determined by the variable assignment, summing the weights and the terminal node value.
BMD (Binary Moment Diagrams)

- **Features**
 - Used for Word level simulation/verification
 - Canonical
 - Based on linear decomposition of a function

- **Functional Decomposition**:
 \[
 f = (1-x) f_{x} + (x) f_{x}
 \]
 \[
 = f_{x} + x (f_{x} - f_{x})
 \]
 \[
 = f_{x} + x (f_{x})
 \]
 where \(f_{x} \) is the linear moment w.r.t. \(x \)
Representing *BMDs

- **Graph:**
 - **Example**

\[
f = (1-x_1)(1-x_2)(8) + (1-x_1)(x_2)(-12) + (x_1)(1-x_2)(10) + (x_1)(x_2)(-6)
\]

\[
= 8 - 20(x_2) + 2(x_1) + 4(x_1 \cdot x_2)
\]

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>-12</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>-6</td>
</tr>
</tbody>
</table>
Weights combine multiplicatively along path from root to leaf Rules:

- weights of 2 branches relatively prime
- weight 0 allowed only for terminal vertices
- if one edge has weight 0, the other has weight 1
References
