
f...:
·~

~

Indian Institute of Technology Kharagpur
Department of Computer Science and Engineering

Students: 700 (approx.)

"Full marks: 80

Mid-Semester Examination, Spring 2013-14

Programming and Data Structures (CS 11001)

Name Roll No.

Question No. 1 2 3 4 5 6

Marks

Obtained
-- --- --· -- - L ... - - - - ~ - --- --

This question-cum-answer booklet comprises 14 pages (7 sheets)

Instructions:

1. Write your name, roll number and section in the space above.

2. On the top of every odd page write your roll number.

7

Date: 19-Feb-14 (FN)

Time: 2 hours

I Section I

Total

3. Answer all questions in the space provided in this booklet itself. No extra sheet will be provided.

4. Answers should be written neatly in the designated boxes.

5. Use the space designated for rough work for detailed cali::ulations. These would not be evaluated.

6. Marks for every question is shown with the question.

7. No further clarifications to any of the questions will be provided.

8. Use of calculators is allowed.

1

,;:q

Roll No: --------------------

5. Bubble Sort is a simple sorting algorithm that works by repeatedly stepping through the array to be sorted,
comparing each pair of adjacent items and swapping them if they are in the wrong order. The pass through
the array is repeated until no swaps are needed, which indicates that the array is sorted. The algorithm gets
its name from the way larger elements "bubble" to the top of the array.

The following is a sample run for a given array of five elements 5 1 4 2 8 :

First Pass:
(5 1 4 2 8) '--+ (1 5 4 2 8) , Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) -+ (1 4 5 2 8) , Swap since 5 > 4
(1 4 5 2 8) -+ (1 4 2 5 8) , Swap since 5 > 2
(1 4 2 5 8) -+ (1 4 2 5 8), Now, since these elements are already in order (8 > 5), algorithm does not
swap them.

Second Pass:
(14258)-+(14258)
(1 4 2 5 8) -+ (1 2 4 5 8) , Swap since 4 > 2
(12458)-+(12458)
(12458)-+(12458)

Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm needs one
whole pass without any swap to know it is sorted.

Third Pass:
(12458)-+(12458)
(12458)-+(12458)
(12458)-+(12458)
(12458)-+(12458)

(a) Read the following C p;ogram for bubble sort, and fill up the blanks in the program. [10 Marks]

#include <stdio.h>
int main()
{

int array[100], n, c, d, swap;
int flag,= 1; II keeps track of swapping operations

printf("Enter number of elements\n");
scanf("%d", &n);

printf("Enter %d integers\n", n);
for (c = 0; c < n; c++) {

scanf("%d", &array[c]);
} II end for

II Run the algorithm for ascending order sort
II The loop should stop if no swapping occurs or
II it runs for a maximum number of times

for (c = 0 ; ------------------ && ____________ ; c++) {
flag = 0;
for (d = 0 ; d < n- c - 1; d++) {

if (______________________________) { II ascending order sort

8

~

}

II swap

flag
} I /end if

} //end for
} // end for

//track whether the program has entered this if block

printf("Sorted list in ascending order:\n");

for (____________________________) {

printf(" _______ \n"
1

__________________________);

}

return 0;

(b) Given that the elements 17 15 14 11 9 are in the unsorted array, count the number of times swapping
occurs before the entire array gets sorted in ascending order. [3 Marks]

(c) Given an array of size nand sorted in descending order, how many swap operations would be performed
by bubble sort to get it sorted in ascending order? [2 Marks]

6. You are given an array A of n integers. It is given that the elements of A satisfy the following inequalities: A [0) <
A[1] < ... < A[m- 1] < A[m] > A[m + 1] > A[m + 2] > . . . > A[n- 1] for some (unknown) index
min the range [1 In - 2]. Let us call such an array a "hill-valued" array. The sequence A [0] I A [1] 1 •••

A [m - 1] 1 A [m] is called the "ascending part" of the hill, and the remaining part A [m] I A [m+1] I .
A [n - 1] is called the "descending part" of the hill. The element A [m] is the "peak" of the hill and is the
largest element in the array. Your task is to locate the peak, i.e., determine the values of m and A [m]. The

9

{-~

:·I

