Number Representation

... and a few concepts on precision

Pallab Dasgupta Professor, Dept. of Computer Sc & Engg

How are numeric data items actually stored in computer memory? How much space (memory locations) is allocated for each type of data?

• int, float, char, etc.

How are characters and strings stored in memory?

Number System :: The Basics

We are accustomed to using the so-called *decimal number system*.

- Ten digits :: 0,1,2,3,4,5,6,7,8,9
- Every digit position has a weight which is a power of 10.
- Base or radix is 10.

Example:

 $234 = 2 \times 10^{2} + 3 \times 10^{1} + 4 \times 10^{0}$ $250.67 = 2 \times 10^{2} + 5 \times 10^{1} + 0 \times 10^{0} + 6 \times 10^{-1} + 7 \times 10^{-2}$

Binary Number System

Two digits:

- 0 and 1.
- Every digit position has a weight which is a power of 2.
- Base or radix is 2.

Example:

 $110 = 1 \times 2^{2} + 1 \times 2^{1} + 0 \times 2^{0}$ $101.01 = 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2}$

Binary-to-Decimal Conversion

Each digit position of a binary number has a weight.

• Some power of 2.

A binary number:

$$B = b_{n-1} b_{n-2} \dots b_1 b_0 \cdot b_{-1} b_{-2} \dots b_{-m}$$

Corresponding value in decimal:

$$D = \sum_{i=-m}^{n-1} b_i 2^i$$

Examples

1. 101011 \rightarrow 1x2⁵ + 0x2⁴ + 1x2³ + 0x2² + 1x2¹ + 1x2⁰

= 43

 $(101011)_2 = (43)_{10}$

2. $.0101 \rightarrow 0x2^{-1} + 1x2^{-2} + 0x2^{-3} + 1x2^{-4}$ = .3125 $(.0101)_2 = (.3125)_{10}$

3. $101.11 \rightarrow 1x2^{2} + 0x2^{1} + 1x2^{0} + 1x2^{-1} + 1x2^{-2}$ 5.75 $(101.11)_{2} = (5.75)_{10}$

Decimal-to-Binary Conversion

Consider the integer and fractional parts separately.

For the integer part,

- Repeatedly divide the given number by 2, and go on accumulating the remainders, until the number becomes zero.
- Arrange the remainders in reverse order.

For the fractional part,

- Repeatedly multiply the given fraction by 2.
 - Accumulate the integer part (0 or 1).
 - If the integer part is 1, chop it off.
- Arrange the integer parts *in the order* they are obtained.

Example 1 :: 239

 $(239)_{10} = (11101111)_2$

Example 2 :: 64

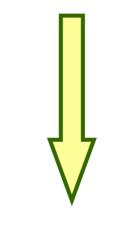
$$(64)_{10} = (100000)_2$$

Example 3 :: .634

•

.

.634 x 2=1.268.268 x 2=0.536.536 x 2=1.072.072 x 2=0.144.144 x 2=0.288



 $(.634)_{10} = (.10100....)_2$

Example 4 :: 37.0625

$$(37)_{10} = (100101)_2$$

 $(.0625)_{10} = (.0001)_2$

 $(37.0625)_{10} = (100101.0001)_2$

Hexadecimal Number System

A compact way of representing binary numbers.

16 different symbols (radix = 16).

 $0 \rightarrow 0000$ $8 \rightarrow 1000$
 $1 \rightarrow 0001$ $9 \rightarrow 1001$
 $2 \rightarrow 0010$ $A \rightarrow 1010$
 $3 \rightarrow 0011$ $B \rightarrow 1011$
 $4 \rightarrow 0100$ $C \rightarrow 1100$
 $5 \rightarrow 0101$ $D \rightarrow 1101$
 $6 \rightarrow 0110$ $E \rightarrow 1110$
 $7 \rightarrow 0111$ $F \rightarrow 1111$

Binary-to-Hexadecimal Conversion

For the integer part,

- Scan the binary number from *right to left*.
- Translate each group of four bits into the corresponding hexadecimal digit.
 - Add *leading* zeros if necessary.

For the fractional part,

- Scan the binary number from *left to right*.
- Translate each group of four bits into the corresponding hexadecimal digit.
 - Add trailing zeros if necessary.

Example

- 1. $(\underline{1011} \ \underline{0100} \ \underline{0011})_2 = (B43)_{16}$
- 2. $(\underline{10} \ \underline{1010} \ \underline{0001})_2 = (2A1)_{16}$
- 3. $(.\underline{1000} \ \underline{010})_2 = (.84)_{16}$
- 4. $(\underline{101} \cdot \underline{0101} \ \underline{111})_2 = (5.5E)_{16}$

Hexadecimal-to-Binary Conversion

Translate every hexadecimal digit into its 4-bit binary equivalent.

Examples:

- $(3A5)_{16} = (0011 \ 1010 \ 0101)_2$
- $(12.3D)_{16} = (0001\ 0010\ .\ 0011\ 1101)_2$
- $(1.8)_{16} = (0001.1000)_2$

Unsigned Binary Numbers

An n-bit binary number

 $B = b_{n-1}b_{n-2} \dots b_2b_1b_0$

• 2ⁿ distinct combinations are possible, 0 to 2ⁿ-1.

For example, for n = 3, there are 8 distinct combinations.

• 000, 001, 010, 011, 100, 101, 110, 111

Range of numbers that can be represented

n=8 \rightarrow 0 to 2⁸-1 (255) n=16 \rightarrow 0 to 2¹⁶-1 (65535) n=32 \rightarrow 0 to 2³²-1 (4294967295)

Signed Integer Representation

Many of the numerical data items that are used in a program are signed (positive or negative).

• Question:: How to represent sign?

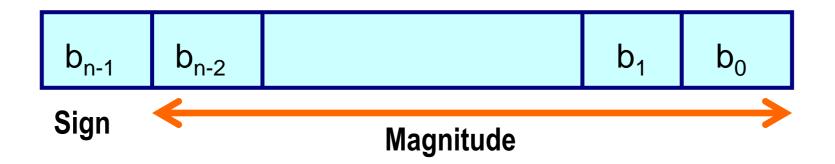
Three possible approaches:

- Sign-magnitude representation
- One's complement representation
- Two's complement representation

Sign-magnitude Representation

For an n-bit number representation

- The most significant bit (MSB) indicates sign
 - $0 \rightarrow \text{positive}$
 - $1 \rightarrow negative$
- The remaining n-1 bits represent magnitude.



Contd.

Range of numbers that can be represented:

Maximum :: $+(2^{n-1} - 1)$ Minimum :: $-(2^{n-1} - 1)$

A problem:

Two different representations of zero. + 0 \rightarrow 0 000....0 - 0 \rightarrow 1 000....0

One's Complement Representation

Basic idea:

- Positive numbers are represented exactly as in sign-magnitude form.
- Negative numbers are represented in 1's complement form.

How to compute the 1's complement of a number?

- Complement every bit of the number $(1 \rightarrow 0 \text{ and } 0 \rightarrow 1)$.
- MSB will indicate the sign of the number.
 - $0 \rightarrow \text{positive}$
 - $1 \rightarrow$ negative

Example :: n=4

- $0000 \rightarrow +0 \qquad 1000 \rightarrow -7$
- $0001 \rightarrow +1 \qquad 1001 \rightarrow -6$
- $0010 \rightarrow +2 \qquad 1010 \rightarrow -5$
- $0011 \rightarrow +3 \qquad 1011 \rightarrow -4$
- $0100 \rightarrow +4 \qquad 1100 \rightarrow -3$
- $0101 \rightarrow +5 \qquad 1101 \rightarrow -2$
- $0110 \rightarrow +6 \qquad 1110 \rightarrow -1$
- $0111 \rightarrow +7 \qquad 1111 \rightarrow -0$

To find the representation of, say, -4, first note that

$$+4 = 0100$$

-4 = 1's complement of 0100 = 1011

Contd.

Range of numbers that can be represented:

```
Maximum :: + (2^{n-1} - 1)
Minimum :: - (2^{n-1} - 1)
```

A problem:

Two different representations of zero. +0 \rightarrow 0 000....0 -0 \rightarrow 1 111....1

Advantage of 1's complement representation

- Subtraction can be done using addition.
- Leads to substantial saving in circuitry.

Subtraction Using Addition :: 1's Complement

How to compute A – B ?

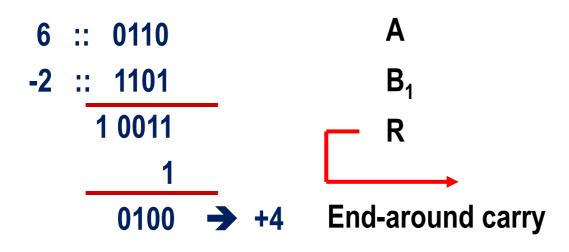
- Compute the 1's complement of B (say, B₁).
- Compute $R = A + B_1$
- If the carry obtained after addition is '1'
 - Add the carry back to R (called end-around carry).
 - That is, R = R + 1.
 - The result is a positive number.

Else

• The result is negative, and is in 1's complement form.

Example 1 :: 6 – 2

1's complement of 2 = 1101



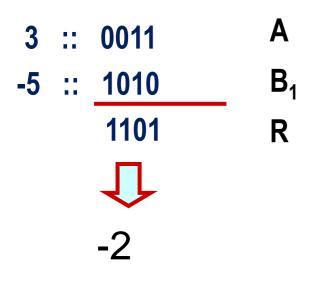
Assume 4-bit representations.

Since there is a carry, it is added back to the result.

The result is positive.

Example 2 :: 3 – 5

1's complement of 5 = 1010



Assume 4-bit representations.

Since there is no carry, the result is negative.

1101 is the 1's complement of 0010, that is, it represents -2.

Arithmetic Operations: 1's Complement

1's complement of $X = 2^n - 1 - X$

Arithmetic	1's complement
x + y	x + y
x - y	$x + (2^{n} - 1 - y) = 2^{n} - 1 + (x - y)$
-x + y	$(2^{n} - 1 - x) + y = 2^{n} - 1 + (-x + y)$
-x - y	$(2^{n} - 1 - x) + (2^{n} - 1 - y) = 2^{n} - 1 + (2^{n} - 1 - x - y)$

1's Complement Example

```
Example: -4 - 3 = -7
```

```
4 in binary = 0100.
Flipping the bits, you get -4 (1011) in binary.
3 in binary = 0011.
Flipping the bits, you get -3 (1100) in binary.
```

```
1011 (11 in decimal, or 15-4)
+ 1100 (12 in decimal, or 15-3)
```

```
1,0111 (23 in decimal (15+15-7))
```

So now take the extra 1 and remove it from the 5th spot and add it to the remainder 0111 + 1

```
1000 (-7 in 1's comp)
```

Arithmetic Operations: Example: 4 – 3 = 1

 $4_{10} = 0100_2$

 $3_{10} = 0011_2$ $-3_{10} \rightarrow 1100_2$ in one's complement

0100 (4 in decimal) + 1100 (12 in decimal or 15-3) 1,0000 (16 in decimal or 15+1) 0001(after deleting 2ⁿ-1)

We discard the extra 1 at the left which is 2ⁿ and add one at the first bit.

Arithmetic Operations: Example: -4 +3 = -1

 $4_{10} = 0100_2$ - 4_{10} → Using one's comp. → 1011_2 (Invert bits) $3_{10} = 0011_2$

1011 (11 in decimal or 15-4) + 0011 (3 in decimal) 1110 (14 in decimal or 15-1)

If the left-most bit is 1, it means that we have a negative number.

Overflow: Example: 5 + 6

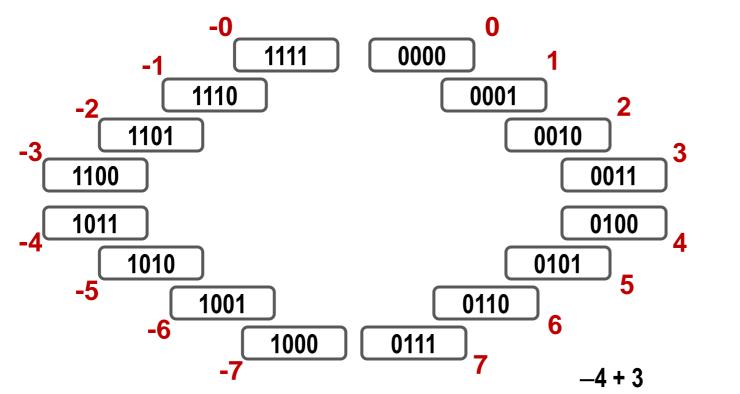
5₁₀ = 0101₂

 $6_{10} = 0110_2$

0101 (5 in decimal) + 0110 (6 in decimal) 1011 (negative numbers in 1's compliment)

Overflows are handled separately

Explanation: – 4 + 3



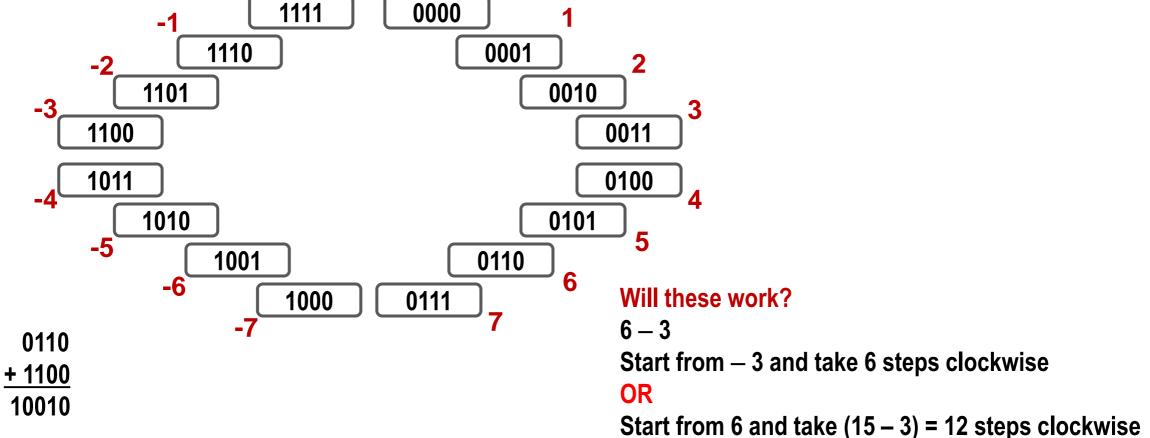
In this example: 1's complement of X = 15 – X

Start from –4 and take 3 steps clockwise OR

Start from 3 and take (15 - 4) = 11 steps clockwise

Explanation: 6 – 3

-0



0

We have end around carry only when we traverse the two 0's clockwise !! Adding the end-around carry compensates for the two 0's !!

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

How to handle the problem of having two 0's ?

Two's Complement Representation

Basic idea:

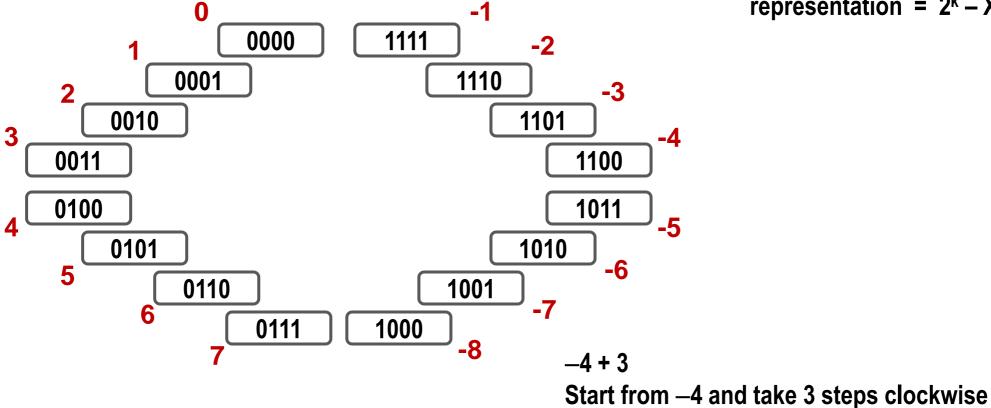
- Positive numbers are represented exactly as in sign-magnitude form.
- Negative numbers are represented in 2's complement form.

How to compute the 2's complement of a number?

- Complement every bit of the number (1→0 and 0→1), and then add one to the resulting number.
- MSB will indicate the sign of the number.
 - $0 \rightarrow \text{positive}$
 - $1 \rightarrow negative$

Two's complement: -4 + 3

2's complement of X in a k-bit representation = $2^{k} - X$

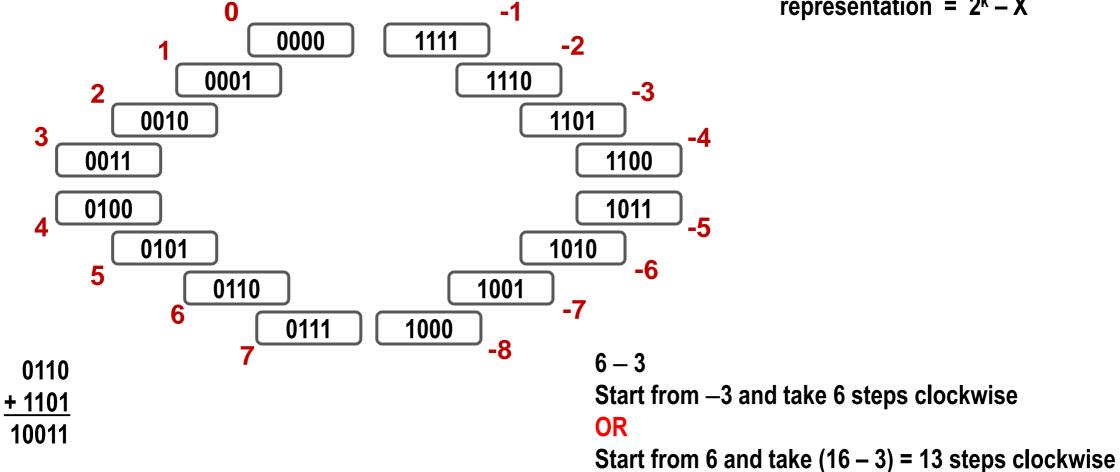


OR

Start from 3 and take (16 - 4) = 12 steps clockwise

Two's complement: 6 – 3

2's complement of X in a k-bit representation = $2^{k} - X$



The end around carry can be ignored (modulo arithmetic) !!

Two's complement

Range of numbers that can be represented:

```
Maximum :: + (2^{n-1} - 1)
Minimum :: -2^{n-1}
```

Advantage:

- Unique representation of zero.
- Subtraction can be done using addition.
- Leads to substantial saving in circuitry.

Almost all computers today use the 2's complement representation for storing negative numbers.

Contd.

In C

- short int
 - 16 bits \rightarrow + (2¹⁵-1) to -2¹⁵
- int
- 32 bits \rightarrow + (2³¹-1) to -2³¹
- long int
 - 64 bits \rightarrow + (2⁶³-1) to -2⁶³

Floating-point Numbers

The representations discussed so far applies only to integers.

• Cannot represent numbers with fractional parts.

We can assume a decimal point before a 2's complement number.

• In that case, pure fractions (without integer parts) can be represented.

We can also assume the decimal point somewhere in between.

- This lacks flexibility.
- Very large and very small numbers cannot be represented.

Representation of Floating-Point Numbers

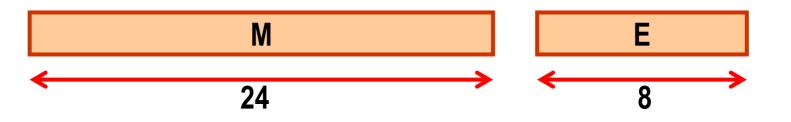
A floating-point number F is represented by a doublet <M,E> :

- $F = M \times B^{E}$
 - B \rightarrow exponent base (usually 2)
 - M → mantissa
 - E \rightarrow exponent
- M is usually represented in 2's complement form, with an implied decimal point before it.

For example,

In decimal, 0.235 x 10⁶ In binary, 0.101011 x 2⁰¹¹⁰

Example :: 32-bit representation



• M represents a 2's complement fraction

1 > M > -1

• E represents the exponent (in 2's complement form)

127 > E > -128

Points to note:

- The number of significant digits depends on the number of bits in M.
 - 6 significant digits for 24-bit mantissa.
- The *range* of the number depends on the number of bits in E.
 - 10³⁸ to 10⁻³⁸ for 8-bit exponent.

A Warning

The representation for floating-point numbers as shown is just for illustration.

The actual representation is a little more complex.

In C:

- float :: 32-bit representation
- double :: 64-bit representation

Representation of Characters

Many applications have to deal with non-numerical data.

- Characters and strings.
- There must be a standard mechanism to represent alphanumeric and other characters in memory.

Three standards in use:

- Extended Binary Coded Decimal Interchange Code (EBCDIC)
 - Used in older IBM machines.
- American Standard Code for Information Interchange (ASCII)
 - Most widely used today.
- UNICODE
 - Used to represent all international characters.
 - Used by Java.

ASCII Code

Each individual character is numerically encoded into a unique 7-bit binary code.

- A total of 2⁷ or 128 different characters.
- A character is normally encoded in a byte (8 bits), with the MSB not been used.

The binary encoding of the characters follow a regular ordering.

- Digits are ordered consecutively in their proper numerical sequence (0 to 9).
- Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic order.

'z' :: 7A (H) 122 (D)

.

'b' :: 62 (H) 98 (D)

'a' :: 61 (H) 97 (D)

'Z' :: 5A (H) 90 (D)

...........

'B' :: 42 (H) 66 (D)

'A' :: 41 (H) 65 (D)

Some Common ASCII Codes

'+' :: **2B (H)** 43 (D) '?' :: **3F (H)** 63 (D) '\n' :: **0A (H) 10 (D)** '\0':: 00 (H) 00 (D)

'9' :: **39 (H) 57 (D)**

'(' :: **28 (H) 40 (D)**

'0' :: 30 (H) 48 (D) '1' :: 31 (H) 49 (D)

String Representation in C

In C, the second approach is used.

• The '\0' character is used as the string delimiter.

A null string "" occupies one byte in memory.

• Only the '\0' character.

Precision of Floating Point Numbers

• Two floating point numbers should not be checked for equality

```
double x = 10;
double y = sqrt(x);
y *= y;
if (x == y)
        printf("Square root is exact \n");
else
        printf("%lf\n", x - y);
Output: -1.778636e-015
```

 Use a tolerance to compare equality. Here is some threshold that defines what is "close enough" for equality

```
double tolerance = 0.000001f
if (fabs(x - y) < tolerance) {...}
```

Precision of Floating Point Numbers (contd..)

Subtraction of two floating point numbers create a problem when they are nearly equal

```
for (i = 1; i < 20; ++i)
{
    double h = pow(10.0, -i);
    printf("%lf \n",(sin(1.0+h) - sin(1.0))/h));
}</pre>
```

```
printf("True result: %lf", cos(1.0));
```

Observation

- The precision of the calculated value improves initially
- The precision decreases gradually when values of *sin(1.0 + h)* and *sin(1.0)* become nearly equal to each other

Output
0.4
0.53
0.53
0.5402
0.5402
0.540301
0.5403022
0.540302302
0.54030235
0.5403022
0.540301
0.54034
0.53
0.544
0.55
0
0
0
0
True result:
0.54030230586814

Precision of Floating Point Numbers (contd..)

Floating point numbers have finite ranges

```
float val = 16777216;
printf("val = %f \n (val + 1) = %f", val, (val + 1));
Output: val = 16777216
  (val + 1) = 16777216
```

Observation

- In both the cases, same number is printed
- In 32 bit floating point representation, 24 bits are used to represent the mantissa
- In this case, 16777216 = 2²24. The 32 bit representation of the floating point does not have any
 precision left to represent 16777216 + 1