Number Representation

... and a few concepts on precision

Pallab Dasgupta
Professor,
Dept. of Computer Sc & Engg

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR -~

Topics to be Discussed

How are numeric data items actually stored in computer memory?
How much space (memory locations) is allocated for each type of data?

* int, float, char, etc.
How are characters and strings stored in memory?

Number System :: The Basics

We are accustomed to using the so-called decimal number system.

« Tendigits :: 0,1,2,3,4,5,6,7,8,9
* Every digit position has a weight which is a power of 10.
- Base orradix is 10.

Example:

234 =2x10% + 3x10" + 4x10°
250.67 = 2x102 + 5x10" + 0x10° + 6 x 10" + 7 x 102

Binary Number System

Two digits:

« Oand1.
» Every digit position has a weight which is a power of 2.
* Baseorradixis 2.

Example:

110=1x22 + 1x2' + 0x 20
101.01=1x22 + 0x2" + 1x2° + 0x 2" + 1x2?2

Binary-to-Decimal Conversion

Each digit position of a binary number has a weight.

» Some power of 2.

A binary number:

B=b_b_,...byby.b b,...b,

Corresponding value in decimal:

D= Z biZi

i=—m

Examples

1. 101011 > 1x25+ 0x2% + 1x23 + 0x22 + 1x2" + 1x20
= 43
(101011), = (43),,

2. 0101 D O0x2!+1x22 + 0x23 + 1x24
= 3125
(.0101), = (.3125),,

3. 10111 D 1x22+ 0x2' + 1x20 + 1x2" + 1x22
5.75
(101.11), = (5.75),,

Decimal-to-Binary Conversion

Consider the integer and fractional parts separately.

For the integer part,
 Repeatedly divide the given number by 2, and go on accumulating the remainders,
until the number becomes zero.
* Arrange the remainders in reverse order.

For the fractional part,

* Repeatedly multiply the given fraction by 2.
» Accumulate the integer part (0 or 1).
* |If the integer part is 1, chop it off.
* Arrange the integer parts in the order they are obtained.

Example 1 :: 239

(239),, = (11101111),

N MDD MDD MM DM DMMDDMDODN
RN
=N

Example 2 :: 64

64
32 -

(64),, = (1000000),

=N |+ |oo
P
Ol oolIOo oo

N MDD NN MDD DNMDDNDODD

Example 3 :: .634

634 x 2
268 x 2
936 x 2
072 x 2
144 x 2

1.268
0.536
1.072
0.144
0.288

V

(.634),, = (.10100

)2

Example 4 :: 37.0625

(37),, = (100101),
(.0625),, = (.0001),

-.(37.0625),, = (100101 . 0001),

Hexadecimal Number System

A compact way of representing binary numbers.
16 different symbols (radix = 16).

0 -> 0000 8 -> 1000
1 -> 0001 9 -> 1001
2 - 0010 A -> 1010
3 > 0011 B -> 1011
4 - 0100 C > 1100
5> 0101 D > 1101
6 > 0110 E -> 1110
7> 011 F-> 1111

Binary-to-Hexadecimal Conversion

For the integer part,

* Scan the binary number from right to left.
* Translate each group of four bits into the corresponding hexadecimal digit.
 Add leading zeros if necessary.

For the fractional part,

» Scan the binary number from left to right.
* Translate each group of four bits into the corresponding hexadecimal digit.
 Add ftrailing zeros if necessary.

Example

1. (10110100 0011), = (B43),,
2. (101010 0001), = (2A1),
3. (1000 010), = (.84)4

4. (101.0101111), = (5.5E)

Hexadecimal-to-Binary Conversion

Translate every hexadecimal digit into its 4-bit binary equivalent.

Examples:
(3AS5),, = (0011 1010 0101),
(12.3D),, = (0001 0010 . 0011 1101),
(1.8)4¢ = (0001 .1000),

Unsigned Binary Numbers

An n-bit binary number

B=Db,b,,.. bbb,
« 2" distinct combinations are possible, 0 to 2"-1.

For example, for n = 3, there are 8 distinct combinations.
- 000, 001, 010, 011, 100, 101, 110, 111

Range of numbers that can be represented
n=8=> 0 to 231 (255)
n=16 > 4 0 to 2'%-1(65535)
n=32 > 0 to 232-1(4294967295)

Signed Integer Representation

Many of the numerical data items that are used in a program are signed (positive or negative).

* Question:: How to represent sign?

Three possible approaches:

» Sign-magnitude representation
* One’s complement representation
* Two’s complement representation

Sign-magnitude Representation

For an n-bit number representation

 The most significant bit (MSB) indicates sign
0 - positive
1 - negative

» The remaining n-1 bits represent magnitude.

bn-l bn-2 bl bO

i D Y
Sign Magnitude

Contd.

Range of numbers that can be represented:

Maximum :: + (21 -1)
Minimum :: — (2" -1)

A problem:

Two different representations of zero.
+0 -> 0000....0
-0 -> 1000....0

One’s Complement Representation

Basic idea:

* Positive numbers are represented exactly as in sign-magnitude form.
 Negative numbers are represented in 1’s complement form.

How to compute the 1’s complement of a number?

« Complement every bit of the number (1->0 and 0->1).
« MSB will indicate the sign of the number.

0 = positive

1 - negative

Example :: n=4

0000 => +0 1000 - -7

0001 > +1 1001 -> -6

0010 > +2 1010 - -5

0011 > +3 1011 > -4

0100 > +4 1100 -> -3

0101 => +5 1101 > -2

0110 = +6 110 = -1 To find the representation of, say, -4, first note that
0111 > +7 1111 - -0 +4 = 0100

-4 = 1’s complement of 0100 = 1011

Contd.

Range of numbers that can be represented:

Maximum :: +(2"1-1)
Minimum :: — (2™ -1)

A problem:

Two different representations of zero.
+0 -> 0000....0
0 2> 1111...1

Advantage of 1’s complement representation

* Subtraction can be done using addition.
» Leads to substantial saving in circuitry.

Subtraction Using Addition :: 1’'s Complement

How to compute A-B ?

- Compute the 1’s complement of B (say, B,).
* Compute R=A+B,
* If the carry obtained after addition is ‘1’
 Add the carry back to R (called end-around carry).
 Thatis, R=R +1.
* The result is a positive number.
Else

 The result is negative, and is in 1’s complement form.

Example 1 :: 6-2

1’s complement of 2 = 1101

6 :: 0110 A
2 1101 B,
10011

R
1 I

0100 => +4 End-around carry

Assume 4-bit representations.

Since there is a carry, it is added
back to the result.

The result is positive.

Example2 :: 3-5

1’s complement of 5 = 1010

3 = 0011

5 1010
1101
-2

A
B1
R

Assume 4-bit representations.
Since there is no carry, the result is negative.

1101 is the 1’'s complement of 0010, that is, it represents -2.

Arithmetic Operations: 1’s Complement

1’s complement of X= 2" -1 - X

Arithmetic 1’s complement
X+y X +y
X -y X+ (2" -1-y) = 2"-1+(X-y)
Xty (2" -1-x) +y =2"-1+(-x+y)
X -y (2" -1-x) + (2" -1-y) = 2"-1+(2"-1-X-y)

1’s Complement Example
Example: -4-3=-7

4 in binary = 0100.
Flipping the bits, you get —4 (1011) in binary.
3 in binary = 0011.
Flipping the bits, you get -3 (1100) in binary.

1011 (11 in decimal, or 15-4)
+ 1100 (12 in decimal, or 15-3)

1,0111 (23 in decimal (15+15-7))
So now take the extra 1 and remove it from the 5th spot and add it to the remainder
0111

1000 (-7 in 1’'s comp)

27

Arithmetic Operations: Example: 4-3 =1

4,,= 0100,

340= 0011, -3,0=2 1100, in one’s complement

0100 (4 in decimal)
+ 1100 (12 in decimal or 15-3)
1,0000 (16 in decimal or 15+1)
0001(after deleting 2"1)

We discard the extra 1 at the left which is 2" and add one at the first bit.

28

Arithmetic Operations: Example: -4 +3 = -1

4,,= 0100, -4,,=> Using one’s comp.~> 1011,

(Invert bits)
310= 0011,

1011 (11 in decimal or 15-4)
+ 0011 (3 in decimal)
1110 (14 in decimal or 15-1)

If the left-most bit is 1, it means that we have a negative number.

Overflow: Example: 5 + 6

5.0= 0101,
6,,= 0110,
0101 (5 in decimal)

+ 0110 (6 in decimal)
1011 (negative numbers in 1’s compliment)

Overflows are handled separately

30

Explanation: —4 + 3

In this example:

-0 0 1’s complement of X= 15-X
1 1111 0000 1
9 1110 0001 2
3 1101 0010
1100 0011
4 1011 0100
1010 0101 c
™ 1001 0110
6 6
1000 0111
-7 ! —4+3

Start from —4 and take 3 steps clockwise
OR

Start from 3 and take (15 - 4) = 11 steps clockwise

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Explanation: 6 -3

In this example:

-0 0 1’s complement of X= 15-X
1 1111 0000 1
9 1110 0001 2
3 1101 0010 3
1100 0011
4 1011 0100 4
1010 0101 .
= 1001 0110 J _
© 1000) (o111 Will these work?
0110 ! ! 6-3
+ 1100 Start from — 3 and take 6 steps clockwise
10010 OR

Start from 6 and take (15 - 3) = 12 steps clockwise

We have end around carry only when we traverse the two 0’s clockwise !!
Adding the end-around carry compensates for the two 0’s !!

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

How to handle the problem of having two 0’s ?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Two’s Complement Representation

Basic idea:

* Positive numbers are represented exactly as in sign-magnitude form.

 Negative numbers are represented in 2’s complement form.

How to compute the 2’s complement of a number?
» Complement every bit of the number (10 and 0->1), and then add one to the resulting
number.
» MSB will indicate the sign of the number.
0 = positive
1 -> negative

Two’s complement: — 4 + 3

2's complement of X in a k-bit

0 1 representation = 2k-X
1 0000 111 2
5 0001 1110 3
0010 1101 ”
0011 1100
0100 1011 5
0101 1010
> 0110 1001 ©
° o111_) (1000 !
7 B —4+3

Start from —4 and take 3 steps clockwise

OR

Start from 3 and take (16 — 4) = 12 steps clockwise

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Two’s complement: 6 — 3

2's complement of X in a k-bit

0 1 representation = 2k-X
1 0000 1111 2
5 0001 1110 3
3 0010 1101 2
0011 1100
4 0100 1011 =
0101 1010 .
> 0110 001)
° o1t) (1000)
0110 ! 6-3
+ 1101 Start from —3 and take 6 steps clockwise
10011 OR

Start from 6 and take (16 — 3) = 13 steps clockwise

The end around carry can be ignored (modulo arithmetic) !!

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Two’s complement

Range of numbers that can be represented:
Maximum :: + (21 -1)
Minimum :; — 2"
Advantage:
 Unique representation of zero.
* Subtraction can be done using addition.

» Leads to substantial saving in circuitry.

Almost all computers today use the 2’'s complement representation for storing negative
numbers.

Contd.

InC

* short int

« 16 bits = +(2"°1) to -2
* int

« 32 bits = +(2311) to -2%1
* long int

* 64 bits = +(26-1) to -263

Floating-point Numbers

The representations discussed so far applies only to integers.

 Cannot represent numbers with fractional parts.
We can assume a decimal point before a 2's complement number.

* In that case, pure fractions (without integer parts) can be represented.
We can also assume the decimal point somewhere in between.

* This lacks flexibility.
* Very large and very small numbers cannot be represented.

Representation of Floating-Point Numbers

A floating-point number F is represented by a doublet <M,E> :

F=Mx BE
B = exponent base (usually 2)
M = mantissa
« E - exponent

« M is usually represented in 2's complement form, with an implied decimal point
before it.

For example,

In decimal,
0.235 x 106
In binary,
0.101011 x 20110

Example :: 32-bit representation

| T | E

<€ 24 > € 3 >

* M represents a 2’s complement fraction
1>M> -1
* E represents the exponent (in 2’s complement form)
127 > E > 128
Points to note:

 The number of significant digits depends on the number of bits in M.
* 6 significant digits for 24-bit mantissa.

* The range of the number depends on the number of bits in E.
« 103 to 103 for 8-bit exponent.

A Warning

The representation for floating-point numbers as shown is just for illustration.
The actual representation is a little more complex.

In C:

* float :: 32-bit representation
* double :: 64-bit representation

Representation of Characters

Many applications have to deal with non-numerical data.

» Characters and strings.

* There must be a standard mechanism to represent alphanumeric and other characters in
memory.

Three standards in use:

- Extended Binary Coded Decimal Interchange Code (EBCDIC)
 Used in older IBM machines.

» American Standard Code for Information Interchange (ASCII)
* Most widely used today.

- UNICODE
« Used to represent all international characters.
* Used by Java.

ASCII Code

Each individual character is numerically encoded into a unique 7-bit binary code.

* A total of 27 or 128 different characters.

* A character is normally encoded in a byte (8 bits), with the MSB not been used.

The binary encoding of the characters follow a regular ordering.

* Digits are ordered consecutively in their proper numerical sequence (0 to 9).

* Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic
order.

Some Common ASCII Codes

‘N' 11 41 (H) 65 (D)
‘B’ :: 42 (H) 66 (D)

‘2’ :» S5A (H) 90 (D)

2’ 1 61 (H) 97 (D)
o’ 1 62 (H) 98 (D)

2’ :: TA(H) 122 (D)

:: 39 (H) 57 (D)

|
:: 2B (H) 43 (D)
. 3F (H) 63 (D)
\n’ i

\0’::

‘?!

:: 30 (H) 48 (D)
:: 31 (H) 49 (D)

28 (H) 40 (D)

0A (H) 10 (D)
00 (H) 00 (D)

String Representation in C

In C, the second approach is used.

 The 10’ character is used as the string delimiter.

Example:
“Hello” =>»

[Hlef 1|1]o]w0]

A null string “” occupies one byte in memory.

* Only the \0’ character.

Precision of Floating Point Numbers

» Two floating point numbers should not be checked for equality
double x = 10;
double y = sqgrt(x);
y *=y;
if (x == y)
printf (“Square root is exact \n”);
else

printf (“$1f\n”, x - y);

Output: -1.778636e-015

* Use a tolerance to compare equality. Here is some threshold that defines what is "close
enough" for equality
double tolerance = 0.0000001f
if (fabs(x - y) < tolerance) {...}

Precision of Floating Point Numbers (contd..)

» Subtraction of two floating point numbers create a problem when they are nearly equal

OutEut

. . _ 0.4.. ...,
for (1 = 1; i < 20; ++i) 053
{ 0.53..........
double h = pow(10.0, -i); 09802
0.5402........
printf (“%$1f \n”, (sin(1.0+h) - sin(1.0))/h)); 0.540301......
} 0.5403022.....
_ 0.540302302. ..
printf (“True result: %$1f”, cos(1.0)); 0.54030235
0.5403022.....
. 0.540301......
Observation 0.54034.......
- The precision of the calculated value improves initially 0.53..........
.] 0.544.........
 The precision decreases gradually when values of sin(1.0 + h) and 055

sin(1.0) become nearly equal to each other 0

0

0

0

True result:
0.54030230586814

Precision of Floating Point Numbers (contd..)

* Floating point numbers have finite ranges

float val = 16777216;
printf(“val = $f \n (val + 1) = %£”, val, (val + 1));

Output: wval 16777216
(val + 1) = 16777216

Observation
* In both the cases, same number is printed

* In 32 bit floating point representation, 24 bits are used to represent the mantissa

* In this case, 16777216 = 2" 24. The 32 bit representation of the floating point does not have any
precision left to represent 16777216 + 1

