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Topics to be Discussed 

 

How are numeric data items actually stored in computer memory? 

How much space (memory locations) is allocated for each type of data? 

• int, float, char, etc. 

How are characters and strings stored in memory? 



Number System :: The Basics 

We are accustomed to using the so-called decimal number system. 

• Ten digits ::  0,1,2,3,4,5,6,7,8,9 

• Every digit position has a weight which is a power of 10. 

• Base or radix is 10. 

 

Example: 

234  =  2 x 102  +  3 x 101  +  4 x 100 

250.67 =  2 x 102  +  5 x 101  +  0 x 100  +  6 x 10-1  +  7 x 10-2 



Binary Number System 

Two digits: 

• 0 and 1. 

• Every digit position has a weight which is a power of 2. 

• Base or radix is 2. 

 

Example: 

110 =  1 x 22  +  1 x 21  +  0 x 20 

101.01 =  1 x 22  +  0 x 21  +  1 x 20  +  0 x 2-1  +  1 x 2-2 

 



Binary-to-Decimal Conversion 

Each digit position of a binary number has a weight. 

• Some power of 2. 

 

A binary number: 

       B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m 

 

Corresponding value in decimal: 

𝑫 =  𝒃𝒊𝟐
𝒊

𝒏−𝟏

𝒊=−𝒎

 



Examples 

1. 101011    1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20 

    = 43 

  (101011)2 = (43)10 

 

2. .0101        0x2-1 + 1x2-2 + 0x2-3 + 1x2-4 

    = .3125 

  (.0101)2 = (.3125)10 

 

3. 101.11      1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2 

    5.75 

  (101.11)2 = (5.75)10 



Decimal-to-Binary Conversion 

Consider the integer and fractional parts separately. 

 

For the integer part, 

• Repeatedly divide the given number by 2, and go on accumulating the remainders, 
until the number becomes zero. 

• Arrange the remainders in reverse order. 

 

For the fractional part, 

• Repeatedly multiply the given fraction by 2. 

• Accumulate the integer part (0 or 1). 

• If the integer part is 1, chop it off. 

• Arrange the integer parts in the order they are obtained. 



Example 1  ::  239 

2 239 

2     119    --- 1 

2  59    --- 1 

2      29    --- 1 

2  14     --- 1 

2       7     --- 0 

2   3     --- 1 

2       1     --- 1 

2       0     --- 1 

(239)10 = (11101111)2 



Example 2  ::  64 

2  64 

2      32    --- 0 

2  16    --- 0 

2        8    --- 0 

2    4    --- 0 

2        2    --- 0 

2    1    --- 0 

2        0    --- 1 

(64)10 = (1000000)2 



Example 3  ::  .634 

.634  x  2   =   1.268 

.268  x  2   =   0.536 

.536  x  2   =   1.072 

.072  x  2   =   0.144 

.144  x  2   =   0.288 

: 

: 

(.634)10 = (.10100……)2 



Example 4  ::  37.0625 

(37)10  =  (100101)2 

(.0625)10  =  (.0001)2 

 

(37.0625)10  =  (100101 . 0001)2 



Hexadecimal Number System 

A compact way of representing binary numbers. 

16 different symbols (radix = 16). 

 

    0    0000 8    1000 

    1    0001 9    1001 

    2    0010 A    1010 

    3    0011 B    1011 

    4    0100 C    1100 

    5    0101 D    1101 

    6    0110 E    1110 

    7    0111 F    1111 



Binary-to-Hexadecimal Conversion 

For the integer part, 

• Scan the binary number from right to left. 

• Translate each group of four bits into the corresponding hexadecimal digit. 

• Add leading zeros if necessary. 

 

For the fractional part, 

• Scan the binary number from left to right. 

• Translate each group of four bits into the corresponding hexadecimal digit. 

• Add trailing zeros if necessary. 

 



Example 

1. (1011 0100 0011)2   =   (B43)16 

2. (10 1010 0001)2       =   (2A1)16 

3. (.1000 010)2             =   (.84)16 

4. (101 . 0101 111)2     =   (5.5E)16 



Hexadecimal-to-Binary Conversion 

Translate every hexadecimal digit into its 4-bit binary equivalent. 

 

Examples: 

    (3A5)16      =   (0011 1010 0101)2 

    (12.3D)16   =   (0001 0010 . 0011 1101)2 

    (1.8)16        =   (0001 . 1000)2 



Unsigned Binary Numbers 

An n-bit binary number 

   B  =  bn-1bn-2 …. b2b1b0 

• 2n distinct combinations are possible, 0 to 2n-1. 

 

For example, for n = 3, there are 8 distinct combinations. 

• 000, 001, 010, 011, 100, 101, 110, 111 

 

Range of numbers that can be represented 

    n=8    0  to  28-1  (255) 

    n=16  0  to  216-1 (65535) 

    n=32  0  to  232-1 (4294967295) 



Signed Integer Representation 

Many of the numerical data items that are used in a program are signed (positive or negative). 

• Question:: How to represent sign? 

 

Three possible approaches: 

• Sign-magnitude representation 

• One‘s complement representation 

• Two‘s complement representation 



Sign-magnitude Representation 

For an n-bit number representation 

• The most significant bit (MSB) indicates sign 

   0    positive 

   1    negative 

• The remaining n-1 bits represent magnitude. 

b0 b1 bn-2 bn-1 

Magnitude 
Sign 



Contd. 

Range of numbers that can be represented: 

     Maximum  ::  + (2n—1  – 1) 

     Minimum   ::   (2n—1  – 1) 

 

A problem: 

     Two different representations of zero. 

    + 0      0 000….0 

     0       1 000….0 



One‘s Complement Representation 

Basic idea: 

• Positive numbers are represented exactly as in sign-magnitude form. 

• Negative numbers are represented in 1‘s complement form. 

 

How to compute the 1‘s complement of a number? 

• Complement every bit of the number (10 and 01). 

• MSB will indicate the sign of the number. 

   0    positive 

   1    negative 



Example  ::  n=4 

0000    +0 

0001    +1 

0010    +2 

0011    +3 

0100    +4 

0101    +5 

0110    +6 

0111    +7 

1000    -7 

1001    -6 

1010    -5 

1011    -4 

1100    -3 

1101    -2 

1110    -1 

1111    -0 

 

To find the representation of, say, -4, first note that 

        +4  =  0100 

        -4   =  1‘s complement of 0100  =  1011 



Contd. 

Range of numbers that can be represented: 

     Maximum  ::  + (2n-1 – 1) 

     Minimum   ::   (2n-1 – 1) 

 

A problem: 

     Two different representations of zero. 

    +0      0 000….0 

    -0       1 111….1 

 

Advantage of 1‘s complement representation 

• Subtraction can be done using addition. 

• Leads to substantial saving in circuitry. 



Subtraction Using Addition :: 1‘s Complement 

How to compute A – B ? 

• Compute the 1‘s complement of B (say, B1). 

• Compute R = A + B1  

• If the carry obtained after addition is ‗1‘ 

• Add the carry back to R  (called end-around carry). 

• That is, R = R + 1. 

• The result is a positive number. 

    Else 

• The result is negative, and is in 1‘s complement form. 

 



Example 1  ::  6 – 2 

1‘s complement of 2  =  1101 

 

  6   ::   0110 

 -2   ::   1101 

          1 0011 

                   1 

             0100      +4 End-around carry 

Assume 4-bit representations. 

Since there is a carry, it is added 

back to the result. 

The result is positive. 

R 

B1 

A 



Example 2  ::  3 – 5 

1‘s complement of 5  =  1010 

 

  3   ::   0011 

 -5   ::   1010 

             1101                         

 

                    

Assume 4-bit representations. 

Since there is no carry, the result is negative. 

1101 is the 1‘s complement of 0010, that is, it represents –2. 

A 

B1 

R 

-2 



Arithmetic Operations: 1‘s Complement 

1‘s complement of X =  2n –1 – X   

Arithmetic 1’s complement 

x + y x + y 

x - y x + (2n -1- y) = 2n-1+(x-y) 

-x + y (2n -1-x) + y =2n-1+(-x+y) 

-x - y (2n -1-x) + (2n -1-y) = 2n-1+(2n-1-x-y) 



2
7

 

Example: – 4 – 3 = – 7 

 

4 in binary = 0100.  

Flipping the bits, you get –4 (1011) in binary. 

3 in binary = 0011.  

Flipping the bits, you get –3 (1100) in binary. 

 

   1011 (11 in decimal, or 15-4) 

+ 1100 (12 in decimal, or 15-3) 

----------------------------------------- 

 1,0111 (23 in decimal (15+15-7)) 

So now take the extra 1 and remove it from the 5th spot and add it to the remainder 

    0111 

+        1 

------------------------------------------ 

    1000 (-7 in 1‘s comp) 

1‘s Complement Example 



Arithmetic Operations: Example: 4 – 3 = 1 

   0100 (4 in decimal ) 

+ 1100 (12 in decimal or 15-3 ) 

1,0000 (16 in decimal or 15+1 ) 

    0001(after deleting 2n-1) 

410 = 01002 

310 = 00112    -310 11002 in one‘s complement                                 

  

 

We discard the extra 1 at the left which is 2n and add one at the first bit. 

2
8

 



Arithmetic Operations: Example: -4 +3 = -1 

   1011 ( 11 in decimal or 15-4 ) 

+ 0011 ( 3 in decimal ) 

   1110 ( 14 in decimal or 15-1 ) 

410 = 01002  -410  Using one‘s comp. 10112 

                     (Invert bits) 
310 = 00112 

If the left-most bit is 1, it means that we have a negative number. 

29
 



Overflow: Example: 5 + 6 

   0101 (5 in decimal ) 

+ 0110 (6 in decimal ) 

   1011 (negative numbers in 1‘s compliment ) 

510 = 01012 

610 = 01102                                  

 

Overflows are handled separately 

3
0

 



Explanation:  4 + 3 
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-1 

-0 

-2 

-3 

-4 

-5 

-6 

-7 7 

6 

5 

4 

3 

2 

1 

0 

4 + 3 

Start from 4 and take 3 steps clockwise 

OR 

Start from 3 and take (15 – 4) = 11 steps clockwise  

In this example:                   

1‘s complement of X =  15 – X   

0000 

0001 

0010 

0011 

0101 

0100 

0110 

0111 

1111 

1110 

1101 

1100 

1010 

1011 

1001 

1000 



Explanation: 6 – 3 
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Will these work? 

6  3 

Start from  3 and take 6 steps clockwise 

OR 

Start from 6 and take (15 – 3) = 12 steps clockwise  

In this example:                   

1‘s complement of X =  15 – X   

   0110 

+ 1100 

 10010 

We have end around carry only when we traverse the two 0‘s clockwise !!  

Adding the end-around carry compensates for the two 0‘s !! 

-1 

-0 

-2 

-3 

-4 

-5 

-6 

-7 7 

6 

5 

4 

3 

2 

1 

0 
0000 

0001 

0010 

0011 

0101 

0100 

0110 

0111 

1111 

1110 

1101 

1100 

1010 

1011 

1001 

1000 
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How to handle the problem of having two 0‘s ? 



Two‘s Complement Representation 

Basic idea: 

• Positive numbers are represented exactly as in sign-magnitude form. 

• Negative numbers are represented in 2‘s complement form. 

 

How to compute the 2‘s complement of a number? 

• Complement every bit of the number (10 and 01), and then add one to the resulting 

number. 

• MSB will indicate the sign of the number. 

   0    positive 

   1    negative 



Two‘s complement:  4 + 3 
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0000 

0001 

0010 

0011 

0101 

0100 

0110 

0111 

1111 

1110 

1101 

1100 

1010 

1011 

1001 

1000 

1 

0 

2 

3 

4 

5 

6 

7 -8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

4 + 3 

Start from 4 and take 3 steps clockwise 

OR 

Start from 3 and take (16 – 4) = 12 steps clockwise  

2‘s complement of X in a k-bit 

representation  =  2k – X   



Two‘s complement: 6  3 
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0000 

0001 

0010 

0011 

0101 

0100 

0110 

0111 

1111 

1110 

1101 

1100 

1010 

1011 

1001 

1000 

1 

0 

2 

3 

4 

5 

6 

7 -8 

-7 

-6 

-5 

-4 

-3 

-2 

-1 

6  3 

Start from 3 and take 6 steps clockwise 

OR 

Start from 6 and take (16 – 3) = 13 steps clockwise  

2‘s complement of X in a k-bit 

representation  =  2k – X   

   0110 

+ 1101 

 10011 

The end around carry can be ignored (modulo arithmetic) !!  



Two‘s complement 

Range of numbers that can be represented: 

     Maximum  ::  + (2n-1 – 1) 

     Minimum   ::   2n-1 

Advantage: 

•  Unique representation of zero. 

•  Subtraction can be done using addition. 

•  Leads to substantial saving in circuitry. 

Almost all computers today use the 2‘s complement representation for storing negative 

numbers. 



Contd. 

In C 

• short int 

• 16 bits      + (215-1)  to  -215 

• int 

• 32 bits      + (231-1)  to  -231 

• long int 

• 64 bits      + (263-1)  to  -263 

 



Floating-point Numbers 

The representations discussed so far applies only to integers. 

• Cannot represent numbers with fractional parts. 

We can assume a decimal point before a 2‘s complement number. 

• In that case, pure fractions (without integer parts) can be represented. 

We can also assume the decimal point somewhere in between. 

• This lacks flexibility. 

• Very large and very small numbers cannot be represented. 



Representation of Floating-Point Numbers 

A floating-point number F is represented by a doublet  <M,E> : 

    F  =  M  x  BE 

• B    exponent base (usually 2) 

• M    mantissa 

• E    exponent 

• M is usually represented in 2‘s complement form, with an implied decimal point 
before it. 

For example,  

    In decimal, 

 0.235 x 106 

    In binary, 

   0.101011 x 20110 



Example  ::  32-bit representation 

 

 

 

• M represents a 2‘s complement fraction 

    1  >  M  >  -1 

• E represents the exponent (in 2‘s complement form) 

   127  >  E  >  -128 

Points to note: 

• The number of significant digits depends on the number of bits in M. 

• 6 significant digits for 24-bit mantissa. 

• The range of the number depends on the number of bits in E. 

• 1038  to  10-38  for 8-bit exponent. 

M E 

24 8 



A Warning 

The representation for floating-point numbers as shown is just for illustration. 

 

The actual representation is a little more complex. 

 

In C: 

• float      ::   32-bit representation 

• double  ::   64-bit representation 



Representation of Characters 

Many applications have to deal with non-numerical data. 

• Characters and strings. 

• There must be a standard mechanism to represent alphanumeric and other characters in 

memory. 

Three standards in use: 

• Extended Binary Coded Decimal Interchange Code (EBCDIC) 

• Used in older IBM machines. 

• American Standard Code for Information Interchange (ASCII) 

• Most widely used today. 

• UNICODE 

• Used to represent all international characters. 

• Used by Java. 



ASCII Code 

Each individual character is numerically encoded into a unique 7-bit binary code. 

• A total of 27 or 128 different characters. 

• A character is normally encoded in a byte (8 bits), with the MSB not been used. 

 

The binary encoding of the characters follow a regular ordering. 

• Digits are ordered consecutively in their proper numerical sequence (0 to 9). 

• Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic 

order. 

 



Some Common ASCII Codes 

‗A‘  ::  41 (H)   65 (D) 

‗B‘  ::  42 (H)   66 (D) 

……….. 

‗Z‘  ::  5A (H)  90 (D) 

 

‗a‘  ::  61 (H)   97 (D) 

‗b‘  ::  62 (H)   98 (D) 

……….. 

‗z‘  ::  7A (H)  122 (D) 

 

‗0‘  ::  30 (H)   48 (D) 

‗1‘  ::  31 (H)   49 (D) 

……….. 

‗9‘  ::  39 (H)   57 (D) 

 

‗(‗   ::  28 (H)  40 (D) 

‗+‘  ::  2B (H)  43 (D) 

‗?‘  ::   3F (H)  63 (D) 

‗\n‘ ::  0A (H)  10 (D) 

‗\0‘ ::   00 (H)  00 (D) 

 



String Representation in C 

In C, the second approach is used. 

• The ‗\0‘ character is used as the string delimiter. 

 

Example: 

―Hello‖        

 

A null string ―‖ occupies one byte in memory. 

• Only the ‗\0‘ character. 

‘\0’ l e H o l 



Precision of Floating Point Numbers  

• Two floating point numbers should not be checked for equality 
 double x = 10;  

 double y = sqrt(x);  

 y *= y;  

 if (x == y)  

  printf(“Square root is exact \n”);  

 else  

  printf(“%lf\n”, x – y); 

 

 Output:  -1.778636e-015 

 

• Use a tolerance to compare equality. Here is some threshold that defines what is "close 

enough" for equality 
 double tolerance = 0.0000001f  

 if (fabs(x - y) < tolerance) {...} 

 



Precision of Floating Point Numbers (contd..)  

• Subtraction of two floating point numbers create a problem when they are nearly equal 

for (i = 1; i < 20; ++i)  

{  

 double h = pow(10.0, -i);  

 printf(“%lf \n”,(sin(1.0+h) - sin(1.0))/h));  

}  

printf(“True result: %lf”, cos(1.0)); 

Output 

0.4...........  

0.53..........  

0.53..........  

0.5402........  

0.5402........  

0.540301......  

0.5403022.....  

0.540302302...  

0.54030235....  

0.5403022.....  

0.540301......  

0.54034.......  

0.53..........  

0.544.........  

0.55..........  

0  

0  

0  

0  

True result: 

0.54030230586814 

Observation 

• The precision of the calculated value improves initially  

•  The precision decreases gradually when values of sin(1.0 + h) and 

sin(1.0) become nearly equal to each other  

 



Precision of Floating Point Numbers (contd..)  

• Floating point numbers have finite ranges 

float val = 16777216;  

printf(“val = %f \n (val + 1) = %f”, val, (val + 1)); 

 

Output:  val = 16777216 

    (val + 1) = 16777216 

Observation 

• In both the cases, same number is printed 

• In 32 bit floating point representation, 24 bits are used to represent the mantissa 

• In this case, 16777216 = 2^24. The 32 bit representation of the floating point does not have any 

precision left to represent 16777216 + 1 

 


