
Number Representation

… and a few concepts on precision

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

Pallab Dasgupta

Professor,

Dept. of Computer Sc & Engg

Topics to be Discussed

How are numeric data items actually stored in computer memory?

How much space (memory locations) is allocated for each type of data?

• int, float, char, etc.

How are characters and strings stored in memory?

Number System :: The Basics

We are accustomed to using the so-called decimal number system.

• Ten digits :: 0,1,2,3,4,5,6,7,8,9

• Every digit position has a weight which is a power of 10.

• Base or radix is 10.

Example:

234 = 2 x 102 + 3 x 101 + 4 x 100

250.67 = 2 x 102 + 5 x 101 + 0 x 100 + 6 x 10-1 + 7 x 10-2

Binary Number System

Two digits:

• 0 and 1.

• Every digit position has a weight which is a power of 2.

• Base or radix is 2.

Example:

110 = 1 x 22 + 1 x 21 + 0 x 20

101.01 = 1 x 22 + 0 x 21 + 1 x 20 + 0 x 2-1 + 1 x 2-2

Binary-to-Decimal Conversion

Each digit position of a binary number has a weight.

• Some power of 2.

A binary number:

 B = bn-1 bn-2 …..b1 b0 . b-1 b-2 ….. b-m

Corresponding value in decimal:

𝑫 = 𝒃𝒊𝟐
𝒊

𝒏−𝟏

𝒊=−𝒎

Examples

1. 101011  1x25 + 0x24 + 1x23 + 0x22 + 1x21 + 1x20

 = 43

 (101011)2 = (43)10

2. .0101  0x2-1 + 1x2-2 + 0x2-3 + 1x2-4

 = .3125

 (.0101)2 = (.3125)10

3. 101.11  1x22 + 0x21 + 1x20 + 1x2-1 + 1x2-2

 5.75

 (101.11)2 = (5.75)10

Decimal-to-Binary Conversion

Consider the integer and fractional parts separately.

For the integer part,

• Repeatedly divide the given number by 2, and go on accumulating the remainders,
until the number becomes zero.

• Arrange the remainders in reverse order.

For the fractional part,

• Repeatedly multiply the given fraction by 2.

• Accumulate the integer part (0 or 1).

• If the integer part is 1, chop it off.

• Arrange the integer parts in the order they are obtained.

Example 1 :: 239

2 239

2 119 --- 1

2 59 --- 1

2 29 --- 1

2 14 --- 1

2 7 --- 0

2 3 --- 1

2 1 --- 1

2 0 --- 1

(239)10 = (11101111)2

Example 2 :: 64

2 64

2 32 --- 0

2 16 --- 0

2 8 --- 0

2 4 --- 0

2 2 --- 0

2 1 --- 0

2 0 --- 1

(64)10 = (1000000)2

Example 3 :: .634

.634 x 2 = 1.268

.268 x 2 = 0.536

.536 x 2 = 1.072

.072 x 2 = 0.144

.144 x 2 = 0.288

:

:

(.634)10 = (.10100……)2

Example 4 :: 37.0625

(37)10 = (100101)2

(.0625)10 = (.0001)2

(37.0625)10 = (100101 . 0001)2

Hexadecimal Number System

A compact way of representing binary numbers.

16 different symbols (radix = 16).

 0  0000 8  1000

 1  0001 9  1001

 2  0010 A  1010

 3  0011 B  1011

 4  0100 C  1100

 5  0101 D  1101

 6  0110 E  1110

 7  0111 F  1111

Binary-to-Hexadecimal Conversion

For the integer part,

• Scan the binary number from right to left.

• Translate each group of four bits into the corresponding hexadecimal digit.

• Add leading zeros if necessary.

For the fractional part,

• Scan the binary number from left to right.

• Translate each group of four bits into the corresponding hexadecimal digit.

• Add trailing zeros if necessary.

Example

1. (1011 0100 0011)2 = (B43)16

2. (10 1010 0001)2 = (2A1)16

3. (.1000 010)2 = (.84)16

4. (101 . 0101 111)2 = (5.5E)16

Hexadecimal-to-Binary Conversion

Translate every hexadecimal digit into its 4-bit binary equivalent.

Examples:

 (3A5)16 = (0011 1010 0101)2

 (12.3D)16 = (0001 0010 . 0011 1101)2

 (1.8)16 = (0001 . 1000)2

Unsigned Binary Numbers

An n-bit binary number

 B = bn-1bn-2 …. b2b1b0

• 2n distinct combinations are possible, 0 to 2n-1.

For example, for n = 3, there are 8 distinct combinations.

• 000, 001, 010, 011, 100, 101, 110, 111

Range of numbers that can be represented

 n=8  0 to 28-1 (255)

 n=16  0 to 216-1 (65535)

 n=32  0 to 232-1 (4294967295)

Signed Integer Representation

Many of the numerical data items that are used in a program are signed (positive or negative).

• Question:: How to represent sign?

Three possible approaches:

• Sign-magnitude representation

• One‘s complement representation

• Two‘s complement representation

Sign-magnitude Representation

For an n-bit number representation

• The most significant bit (MSB) indicates sign

 0  positive

 1  negative

• The remaining n-1 bits represent magnitude.

b0 b1 bn-2 bn-1

Magnitude
Sign

Contd.

Range of numbers that can be represented:

 Maximum :: + (2n—1 – 1)

 Minimum ::  (2n—1 – 1)

A problem:

 Two different representations of zero.

 + 0  0 000….0

  0  1 000….0

One‘s Complement Representation

Basic idea:

• Positive numbers are represented exactly as in sign-magnitude form.

• Negative numbers are represented in 1‘s complement form.

How to compute the 1‘s complement of a number?

• Complement every bit of the number (10 and 01).

• MSB will indicate the sign of the number.

 0  positive

 1  negative

Example :: n=4

0000  +0

0001  +1

0010  +2

0011  +3

0100  +4

0101  +5

0110  +6

0111  +7

1000  -7

1001  -6

1010  -5

1011  -4

1100  -3

1101  -2

1110  -1

1111  -0

To find the representation of, say, -4, first note that

 +4 = 0100

 -4 = 1‘s complement of 0100 = 1011

Contd.

Range of numbers that can be represented:

 Maximum :: + (2n-1 – 1)

 Minimum ::  (2n-1 – 1)

A problem:

 Two different representations of zero.

 +0  0 000….0

 -0  1 111….1

Advantage of 1‘s complement representation

• Subtraction can be done using addition.

• Leads to substantial saving in circuitry.

Subtraction Using Addition :: 1‘s Complement

How to compute A – B ?

• Compute the 1‘s complement of B (say, B1).

• Compute R = A + B1

• If the carry obtained after addition is ‗1‘

• Add the carry back to R (called end-around carry).

• That is, R = R + 1.

• The result is a positive number.

 Else

• The result is negative, and is in 1‘s complement form.

Example 1 :: 6 – 2

1‘s complement of 2 = 1101

 6 :: 0110

 -2 :: 1101

 1 0011

 1

 0100  +4 End-around carry

Assume 4-bit representations.

Since there is a carry, it is added

back to the result.

The result is positive.

R

B1

A

Example 2 :: 3 – 5

1‘s complement of 5 = 1010

 3 :: 0011

 -5 :: 1010

 1101

Assume 4-bit representations.

Since there is no carry, the result is negative.

1101 is the 1‘s complement of 0010, that is, it represents –2.

A

B1

R

-2

Arithmetic Operations: 1‘s Complement

1‘s complement of X = 2n –1 – X

Arithmetic 1’s complement

x + y x + y

x - y x + (2n -1- y) = 2n-1+(x-y)

-x + y (2n -1-x) + y =2n-1+(-x+y)

-x - y (2n -1-x) + (2n -1-y) = 2n-1+(2n-1-x-y)

2
7

Example: – 4 – 3 = – 7

4 in binary = 0100.

Flipping the bits, you get –4 (1011) in binary.

3 in binary = 0011.

Flipping the bits, you get –3 (1100) in binary.

 1011 (11 in decimal, or 15-4)

+ 1100 (12 in decimal, or 15-3)

 1,0111 (23 in decimal (15+15-7))

So now take the extra 1 and remove it from the 5th spot and add it to the remainder

 0111

+ 1

--

 1000 (-7 in 1‘s comp)

1‘s Complement Example

Arithmetic Operations: Example: 4 – 3 = 1

 0100 (4 in decimal)

+ 1100 (12 in decimal or 15-3)

1,0000 (16 in decimal or 15+1)

 0001(after deleting 2n-1)

410 = 01002

310 = 00112 -310 11002 in one‘s complement

We discard the extra 1 at the left which is 2n and add one at the first bit.

2
8

Arithmetic Operations: Example: -4 +3 = -1

 1011 (11 in decimal or 15-4)

+ 0011 (3 in decimal)

 1110 (14 in decimal or 15-1)

410 = 01002 -410  Using one‘s comp. 10112

 (Invert bits)
310 = 00112

If the left-most bit is 1, it means that we have a negative number.

29

Overflow: Example: 5 + 6

 0101 (5 in decimal)

+ 0110 (6 in decimal)

 1011 (negative numbers in 1‘s compliment)

510 = 01012

610 = 01102

Overflows are handled separately

3
0

Explanation:  4 + 3

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
1

-1

-0

-2

-3

-4

-5

-6

-7 7

6

5

4

3

2

1

0

4 + 3

Start from 4 and take 3 steps clockwise

OR

Start from 3 and take (15 – 4) = 11 steps clockwise

In this example:

1‘s complement of X = 15 – X

0000

0001

0010

0011

0101

0100

0110

0111

1111

1110

1101

1100

1010

1011

1001

1000

Explanation: 6 – 3

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
2

Will these work?

6  3

Start from  3 and take 6 steps clockwise

OR

Start from 6 and take (15 – 3) = 12 steps clockwise

In this example:

1‘s complement of X = 15 – X

 0110

+ 1100

 10010

We have end around carry only when we traverse the two 0‘s clockwise !!

Adding the end-around carry compensates for the two 0‘s !!

-1

-0

-2

-3

-4

-5

-6

-7 7

6

5

4

3

2

1

0
0000

0001

0010

0011

0101

0100

0110

0111

1111

1110

1101

1100

1010

1011

1001

1000

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
3

How to handle the problem of having two 0‘s ?

Two‘s Complement Representation

Basic idea:

• Positive numbers are represented exactly as in sign-magnitude form.

• Negative numbers are represented in 2‘s complement form.

How to compute the 2‘s complement of a number?

• Complement every bit of the number (10 and 01), and then add one to the resulting

number.

• MSB will indicate the sign of the number.

 0  positive

 1  negative

Two‘s complement:  4 + 3

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
5

0000

0001

0010

0011

0101

0100

0110

0111

1111

1110

1101

1100

1010

1011

1001

1000

1

0

2

3

4

5

6

7 -8

-7

-6

-5

-4

-3

-2

-1

4 + 3

Start from 4 and take 3 steps clockwise

OR

Start from 3 and take (16 – 4) = 12 steps clockwise

2‘s complement of X in a k-bit

representation = 2k – X

Two‘s complement: 6  3

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
6

0000

0001

0010

0011

0101

0100

0110

0111

1111

1110

1101

1100

1010

1011

1001

1000

1

0

2

3

4

5

6

7 -8

-7

-6

-5

-4

-3

-2

-1

6  3

Start from 3 and take 6 steps clockwise

OR

Start from 6 and take (16 – 3) = 13 steps clockwise

2‘s complement of X in a k-bit

representation = 2k – X

 0110

+ 1101

 10011

The end around carry can be ignored (modulo arithmetic) !!

Two‘s complement

Range of numbers that can be represented:

 Maximum :: + (2n-1 – 1)

 Minimum ::  2n-1

Advantage:

• Unique representation of zero.

• Subtraction can be done using addition.

• Leads to substantial saving in circuitry.

Almost all computers today use the 2‘s complement representation for storing negative

numbers.

Contd.

In C

• short int

• 16 bits  + (215-1) to -215

• int

• 32 bits  + (231-1) to -231

• long int

• 64 bits  + (263-1) to -263

Floating-point Numbers

The representations discussed so far applies only to integers.

• Cannot represent numbers with fractional parts.

We can assume a decimal point before a 2‘s complement number.

• In that case, pure fractions (without integer parts) can be represented.

We can also assume the decimal point somewhere in between.

• This lacks flexibility.

• Very large and very small numbers cannot be represented.

Representation of Floating-Point Numbers

A floating-point number F is represented by a doublet <M,E> :

 F = M x BE

• B  exponent base (usually 2)

• M  mantissa

• E  exponent

• M is usually represented in 2‘s complement form, with an implied decimal point
before it.

For example,

 In decimal,

 0.235 x 106

 In binary,

 0.101011 x 20110

Example :: 32-bit representation

• M represents a 2‘s complement fraction

 1 > M > -1

• E represents the exponent (in 2‘s complement form)

 127 > E > -128

Points to note:

• The number of significant digits depends on the number of bits in M.

• 6 significant digits for 24-bit mantissa.

• The range of the number depends on the number of bits in E.

• 1038 to 10-38 for 8-bit exponent.

M E

24 8

A Warning

The representation for floating-point numbers as shown is just for illustration.

The actual representation is a little more complex.

In C:

• float :: 32-bit representation

• double :: 64-bit representation

Representation of Characters

Many applications have to deal with non-numerical data.

• Characters and strings.

• There must be a standard mechanism to represent alphanumeric and other characters in

memory.

Three standards in use:

• Extended Binary Coded Decimal Interchange Code (EBCDIC)

• Used in older IBM machines.

• American Standard Code for Information Interchange (ASCII)

• Most widely used today.

• UNICODE

• Used to represent all international characters.

• Used by Java.

ASCII Code

Each individual character is numerically encoded into a unique 7-bit binary code.

• A total of 27 or 128 different characters.

• A character is normally encoded in a byte (8 bits), with the MSB not been used.

The binary encoding of the characters follow a regular ordering.

• Digits are ordered consecutively in their proper numerical sequence (0 to 9).

• Letters (uppercase and lowercase) are arranged consecutively in their proper alphabetic

order.

Some Common ASCII Codes

‗A‘ :: 41 (H) 65 (D)

‗B‘ :: 42 (H) 66 (D)

………..

‗Z‘ :: 5A (H) 90 (D)

‗a‘ :: 61 (H) 97 (D)

‗b‘ :: 62 (H) 98 (D)

………..

‗z‘ :: 7A (H) 122 (D)

‗0‘ :: 30 (H) 48 (D)

‗1‘ :: 31 (H) 49 (D)

………..

‗9‘ :: 39 (H) 57 (D)

‗(‗ :: 28 (H) 40 (D)

‗+‘ :: 2B (H) 43 (D)

‗?‘ :: 3F (H) 63 (D)

‗\n‘ :: 0A (H) 10 (D)

‗\0‘ :: 00 (H) 00 (D)

String Representation in C

In C, the second approach is used.

• The ‗\0‘ character is used as the string delimiter.

Example:

―Hello‖ 

A null string ―‖ occupies one byte in memory.

• Only the ‗\0‘ character.

‘\0’ l e H o l

Precision of Floating Point Numbers

• Two floating point numbers should not be checked for equality
 double x = 10;

 double y = sqrt(x);

 y *= y;

 if (x == y)

 printf(“Square root is exact \n”);

 else

 printf(“%lf\n”, x – y);

 Output: -1.778636e-015

• Use a tolerance to compare equality. Here is some threshold that defines what is "close

enough" for equality
 double tolerance = 0.0000001f

 if (fabs(x - y) < tolerance) {...}

Precision of Floating Point Numbers (contd..)

• Subtraction of two floating point numbers create a problem when they are nearly equal

for (i = 1; i < 20; ++i)

{

 double h = pow(10.0, -i);

 printf(“%lf \n”,(sin(1.0+h) - sin(1.0))/h));

}

printf(“True result: %lf”, cos(1.0));

Output

0.4...........

0.53..........

0.53..........

0.5402........

0.5402........

0.540301......

0.5403022.....

0.540302302...

0.54030235....

0.5403022.....

0.540301......

0.54034.......

0.53..........

0.544.........

0.55..........

0

0

0

0

True result:

0.54030230586814

Observation

• The precision of the calculated value improves initially

• The precision decreases gradually when values of sin(1.0 + h) and

sin(1.0) become nearly equal to each other

Precision of Floating Point Numbers (contd..)

• Floating point numbers have finite ranges

float val = 16777216;

printf(“val = %f \n (val + 1) = %f”, val, (val + 1));

Output: val = 16777216

 (val + 1) = 16777216

Observation

• In both the cases, same number is printed

• In 32 bit floating point representation, 24 bits are used to represent the mantissa

• In this case, 16777216 = 2^24. The 32 bit representation of the floating point does not have any

precision left to represent 16777216 + 1

