
DATA TYPES AND EXPRESSIONS

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

Pallab Dasgupta

Professor,

Dept. of Computer Sc & Engg

INTRODUCTION

Data Types in C

int :: integer quantity

 Typically occupies 4 bytes (32 bits) in memory.

char :: single character

 Typically occupies 1 byte (8 bits) in memory.

float :: floating-point number (a number with a decimal point)

 Typically occupies 4 bytes (32 bits) in memory.

double :: double-precision floating-point number

Contd.

Some of the basic data types can be augmented by using certain data type qualifiers:

• short

• long

• signed

• unsigned

Typical examples:

• short int

• long int

• unsigned int

Some Examples of Data Types

int

 0, 25, -156, 12345, 99820

char

 „a‟, „A‟, „*‟, „/‟, „ ‟

float

 23.54, 0.00345, 25.0

 2.5E12, 1.234e-5

E or e means “10 to the power of”

Constants

Constants

Numeric

Constants

Character

Constants

string single

character

floating-point integer

Integer Constants

Consists of a sequence of digits, with possibly a plus or a minus sign before it.

• Embedded spaces, commas and non-digit characters are not permitted between digits.

Maximum and minimum values (for 32-bit representations)

 Maximum :: 2147483647

 Minimum :: – 2147483648

Floating-point Constants

Can contain fractional parts.

Very large or very small numbers can be represented.

 23000000 can be represented as 2.3e7

Two different notations:

1. Decimal notation

 25.0, 0.0034, .84, -2.234

2. Exponential (scientific) notation

 3.45e23, 0.123e-12, 123E2

Single Character Constants

Contains a single character enclosed within a pair of single quote marks.

• Examples :: „2‟, „+‟, „Z‟

Some special backslash characters

 „\n‟ new line

 „\t‟ horizontal tab

 „\‟‟ single quote

 „\”‟ double quote

 „\\‟ backslash

 „\0‟ null

String Constants

Sequence of characters enclosed in double quotes.

• The characters may be letters, numbers, special characters and blank spaces.

Examples:

 “nice”, “Good Morning”, “3+6”, “3”, “C”

Differences from character constants:

• „C‟ and “C” are not equivalent.

• „C‟ has an equivalent integer value while “C” does not.

Declaration of Variables

There are two purposes:

1. It tells the compiler what the variable name is.

2. It specifies what type of data the variable will hold.

General syntax:

 data-type variable-list;

Examples:

 int velocity, distance;

 int a, b, c, d;

 float temp;

 char flag, option;

A First Look at Pointers

A variable is assigned a specific memory location.

• For example, a variable speed is assigned memory location 1350.

• Also assume that the memory location contains the data value 100.

• When we use the name speed in an expression, it refers to the value 100 stored in the

memory location.

distance = speed * time;

Thus every variable has an address (in memory), and its contents.

Contd.

In C terminology, in an expression

 speed refers to the contents of the memory location.

 &speed refers to the address of the memory location.

Examples:

 printf (“%f %f %f”, speed, time, distance);

 scanf (“%f %f”, &speed, &time);

An Example

#include <stdio.h>

main()

 {

 float speed, time, distance;

 scanf (“%f %f”, &speed, &time);

 distance = speed * time;

 printf (“\n The distance traversed is: %f \n”, distance);

 }

Assignment Statement

Used to assign values to variables, using the assignment operator (=).

General syntax:

 variable_name = expression;

Examples:

 velocity = 20;

 b = 15; temp = 12.5;

 A = A + 10;

 v = u + f * t;

 s = u * t + 0.5 * f * t * t;

Contd.

A value can be assigned to a variable at the time the variable is declared.

 int speed = 30;

 char flag = „y‟;

Several variables can be assigned the same value using multiple assignment operators.

 a = b = c = 5;

 flag1 = flag2 = „y‟;

 speed = flow = 0.0;

Operators in Expressions

Operators

Arithmetic

Operators

Relational

Operators

Logical

Operators

Arithmetic Operators

Addition :: +

Subtraction :: –

Division :: /

Multiplication :: *

Modulus :: %

Examples:

distance = rate * time ;

netIncome = income - tax ;

speed = distance / time ;

area = PI * radius * radius;

y = a * x * x + b*x + c;

quotient = dividend / divisor;

remain =dividend % divisor;

Contd.

Suppose x and y are two integer variables, whose values are 13 and 5 respectively.

x + y 18

x – y 8

x * y 65

x / y 2

x % y 3

Operator Precedence

In decreasing order of priority

1. Parentheses :: ()

2. Unary minus :: –5

3. Multiplication, Division, and Modulus

4. Addition and Subtraction

For operators of the same priority, evaluation is from left to right as they appear.

Parenthesis may be used to change the precedence of operator evaluation.

Examples: Arithmetic expressions

a + b * c – d / e a + (b * c) – (d / e)

a * – b + d % e – f a * (– b) + (d % e) – f

a – b + c + d (((a – b) + c) + d)

x * y * z ((x * y) * z)

a + b + c * d * e (a + b) + ((c * d) * e)

Integer Arithmetic

When the operands in an arithmetic expression are integers, the expression is called

integer expression, and the operation is called integer arithmetic.

Integer arithmetic always yields integer values.

Real Arithmetic

Arithmetic operations involving only real or floating-point operands.

Since floating-point values are rounded to the number of significant digits permissible, the

final value is an approximation of the final result.

 1.0 / 3.0 * 3.0 will have the value 0.99999 and not 1.0

The modulus operator cannot be used with real operands.

Mixed-mode Arithmetic

When one of the operands is integer and the other is real, the expression is called a mixed-

mode arithmetic expression.

If either operand is of the real type, then only real arithmetic is performed, and the result is

a real number.

 25 / 10 2

 25 / 10.0 2.5

Some more issues will be considered later.

Type Casting

int a=10, b=4, c;

float x, y;

c = a / b;

x = a / b;

y = (float) a / b;

 The value of c will be 2

 The value of x will be 2.0

 The value of y will be 2.5

Relational Operators

Used to compare two quantities.

< is less than

> is greater than

<= is less than or equal to

>= is greater than or equal to

== is equal to

!= is not equal to

Examples

10 > 20 is false

25 < 35.5 is true

12 > (7 + 5) is false

When arithmetic expressions are used on either side of a relational operator, the arithmetic

expressions will be evaluated first and then the results compared.

 a + b > c – d is the same as (a+b) > (c-d)

Examples

Sample code segment in C

if (x > y)

 printf (“%d is larger\n”, x);

else

 printf (“%d is larger\n”, y);

Logical Operators

There are two logical operators in C (also called logical connectives).

 && Logical AND

 | | Logical OR

What they do?

• They act upon operands that are themselves logical expressions.

• The individual logical expressions get combined into more complex conditions that are true or

false.

Logical Operators

• Logical AND

• Result is true if both the operands are true.

• Logical OR

• Result is true if at least one of the operands are true.

X Y X && Y X | | Y

FALSE FALSE FALSE FALSE

FALSE TRUE FALSE TRUE

TRUE FALSE FALSE TRUE

TRUE TRUE TRUE TRUE

Input / Output

printf

• Performs output to the standard output device (typically defined to be the screen).

• It requires a format string in which we can specify:

• The text to be printed out.

• Specifications on how to print the values.

 printf ("The number is %d.\n", num) ;

• The format specification %d causes the value listed after the format string to be embedded

in the output as a decimal number in place of %d.

• Output will appear as: The number is 125.

Input / Output

scanf

• Performs input from the standard input device, which is the keyboard by default.

• It requires a format string and a list of variables into which the value received from the input

device will be stored.

• It is required to put an ampersand (&) before the names of the variables.

 scanf ("%d", &size) ;

 scanf ("%c", &nextchar) ;

 scanf ("%f", &length) ;

 scanf (“%d %d”, &a, &b);

