
Conditionals and Looping

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

Pallab Dasgupta

Professor,

Dept. of Computer Sc & Engg

Statements and Blocks

An expression followed by a semicolon becomes a statement.

x = 5;

i++;

printf (“The sum is %d\n”, sum”) ;

Braces { and } are used to group declarations and statements together into a compound
statement, or block.

 {
 sum = sum + count;

 count++;

 printf (“sum = %d\n”, sum) ;

 }

Control Statements: What do they do?

Branching:

• Allow different sets of instructions to be executed depending on the outcome of a logical

test.

• Whether TRUE (non-zero) or FALSE (zero).

Looping:

• Some applications may also require that a set of instructions be executed repeatedly,

possibly again based on some condition.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

Conditional Constructs

How do we specify the conditions?

Using relational operators.

• Four relation operators: <, <=, >, >=

• Two equality operations: ==, !=

Using logical operators / connectives.

• Two logical connectives: &&, | |

• Unary negation operator: !

Expressions

(count <= 100)

((math+phys+chem) / 3 >= 60)

((sex == ‟M‟) && (age >= 21))

((marks >= 80) && (marks < 90))

((balance > 5000) | | (no_of_trans > 25))

(!(grade == ‟A‟))

The conditions evaluate to …

Zero

• Indicates FALSE.

Non-zero

• Indicates TRUE.

• Typically the condition TRUE is represented by the value „1‟.

Branching: The if Statement

if (expression)

 statement;

if (expression) {

 Block of statements;

}

The condition to be tested is any expression enclosed in parentheses. The

expression is evaluated, and if its value is non-zero, the statement is executed.

true

false

marks >= 40

 print “Passed”

 print “Good luck”

if (marks>=40) {

 printf(“Passed \n”);

 printf(“Good luck\n”);

}

printf (“End\n”) ;

Branching: if-else Statement

if (expression) {

 Block of statements;

}

else {

 Block of statements;

}

if (expression) {

 Block of statements;

}

else if (expression) {

 Block of statements;

}

else {

 Block of statements;

}

Grade Computation

START

READ MARKS

OUTPUT “A”

MARKS  80? MARKS  70? MARKS  60?

OUTPUT “B” OUTPUT “C”

STOP STOP STOP

YES YES YES

NO NO

OUTPUT “F”

STOP

NO

if (marks >= 80) printf (”A”) ;

else if (marks >= 70) printf (”B”) ;

else if (marks >= 60) printf (”C”) ;

else printf (”Failed”) ;

printf (”\nEnd\n”) ;

Largest of three numbers

START

READ X, Y, Z

IS

Max > Z?

IS

X > Y?

Max = X Max = Y

OUTPUT Max OUTPUT Z

STOP STOP

YES

YES

NO

NO

START

READ X, Y, Z

IS

Max > Z?

IS

X > Y?

Max = X Max = Y

OUTPUT Max OUTPUT Z

STOP STOP

YES

YES

NO

NO

int main () {

 int x, y, z, max;

 scanf (“%d%d%d”,&x,&y,&z);

 if (x>y)

 max = x;

 else max = y;

 if (max > z)

 printf (“%d”, max) ;

 else printf (“%d”,z);

}

Confusing Equality (==) and Assignment (=) Operators

Dangerous error

• Does not ordinarily cause syntax errors.

• Any expression that produces a value can be used in control structures.

• Nonzero values are true, zero values are false.

Example:

 if (payCode == 4)

 printf("You get a bonus!\n");

 if (payCode = 4)

 printf("You get a bonus!\n");

X

Dangling else problem

if (exp1) if (exp2) stmta else stmtb

if (exp1) {

 if (exp2)

 stmta

 else

 stmtb

}

OR

if (exp1) {

 if (exp2)

 stmta

}

else

 stmtb

?

Which one is the correct interpretation?

X
An “else” clause is associated

with the closest preceding

unmatched “if”.

More examples

if e1 s1

else if e2 s2

if e1 s1

else if e2 s2

else s3

if e1 if e2 s1

else s2

else s3

if e1 if e2 s1

else s2

?

if e1 s1

else { if e2 s2 }

if e1 s1

else { if e2 s2

 else s3 }

if e1 { if e2 s1

 else s2 }

else s3

if e1 { if e2 s1

 else s2 }

Common Errors

 c = getchar();

 if ((c == ‟y‟) && (c == ‟Y‟)) printf(“Yes\n”);

 else printf(“No\n”);

 c = getchar();

 if ((c != ‟n‟) || (c != ‟N‟)) printf(“Yes\n”);

 else printf(“No\n”);

The Conditional Operator ?:

This makes use of an expression that is either true or false. An appropriate value is selected,

depending on the outcome of the logical expression.

Example:

interest = (balance>5000) ? balance*0.2 : balance*0.1;

Equivalent to: if (balance > 5000)

 interest = balance * 0.2;

 else interest = balance * 0.1;

Returns a value

The switch statement

This causes a particular group of statements to be chosen from several available groups.

• Uses “switch” statement and “case” labels.

• Syntax of the “switch” statement:

switch (expression) {

 case expression-1: { …….. }

 case expression-2: { …….. }

 case expression-m: { …….. }

 default: { ……… }

}

Examples

switch (letter) {

 case 'A':

 printf ("First letter \n");

 break;

 case 'Z':

 printf ("Last letter \n");

 break;

 default :

 printf ("Middle letter \n");

 break;

}

Will print this statement

for all letters other than

A or Z

Examples

switch (choice = getchar()) {

 case „r‟ :

 case „R‟: printf(“Red”);

 break;

 case „b‟ :

 case „B‟ : printf(“Blue”);

 break;

 case „g‟ :

 case „G‟: printf(“Green”);

 break;

 default: printf(“Black”);

}

Since there isnt a break statement

here, the control passes to the next

statement (printf) without checking

the next condition.

Another way

switch (choice = toupper(getchar())) {

 case „R‟: printf (“RED \n”);

 break;

 case „G‟: printf (“GREEN \n”);

 break;

 case „B‟: printf (“BLUE \n”);

 break;

 default: printf (“Invalid choice \n”);

}

Rounding a Digit

switch (digit) {

 case 0:

 case 1:

 case 2:

 case 3:

 case 4: result = 0; printf (“Round down\n”); break;

 case 5:

 case 6:

 case 7:

 case 8:

 case 9: result = 10; printf(“Round up\n”); break;

}

A Look Back at Arithmetic Operators:

The Increment and Decrement

Increment (++) and Decrement (--)

Both of these are unary operators; they operate on a single operand.

The increment operator causes its operand to be increased by 1.

• Example: a++, ++count

The decrement operator causes its operand to be decreased by 1.

• Example: i--, --distance

Pre-increment versus post-increment

Operator written before the operand (++i, --i))

• Called pre-increment operator.

• Operator will be altered in value before it is utilized for its intended purpose in the

program.

Operator written after the operand (i++, i--)

• Called post-increment operator.

• Operator will be altered in value after it is utilized for its intended purpose in the

program.

Examples

 Initial values :: a = 10; b = 20;

 x = 50 + ++a; a = 11, x = 61

 x = 50 + a++; x = 60, a = 11

 x = a++ + --b; b = 19, x = 29, a = 11

 x = a++ – ++a; ??

Called side effects:: while calculating some values, something else get changed.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
8

Looping Constructs

Types of Repeated Execution

Loop: Group of instructions that are executed repeatedly while some condition remains true.

 How loops are controlled

Sentinel

Controlled

Counter Controlled

•1, 2, 3, 4, …

•…, 4, 3, 2, 1

Condition

Controlled

Counter Controlled Loop

Read 5 integers and display the

value of their sum.

counter ← 1, sum ← 0

counter < 6

sum ← sum + n

false

true

counter++

output sum

input n

 Given an exam marks as input, display the appropriate message based on the rules

below:

 If marks is greater than 49, display “PASS”, otherwise display “FAIL”

 However, for input outside the 0-100 range, display “WRONG INPUT” and

prompt the user to input again until a valid input is entered

Condition-controlled Loop

Condition-Controlled Loop

false

true

input m

m<0 || m>100

m>49 “PASS”

“FAIL”

true

false

“WRONG INPUT”

Condition-controlled loop

with its condition being

tested at the end

false

true

input m

m<0 || m>100

m>49 “PASS”

“FAIL”

true

false

“WRONG INPUT”

input m

Condition-controlled

loop with its condition

being tested first

Sentinel-Controlled Loop

 Receive a number of positive integers and
display the summation and average of these
integers.

 A negative or zero input indicates the end of
input process

while Statement

The “while” statement is used to carry out looping operations, in which a group of statements

is executed repeatedly, as long as some condition remains satisfied.

while (condition)

 statement_to_repeat;

while (condition) {

 statement_1;

 ...

 statement_N;

}

Note:

The while-loop will not be entered if the loop-control expression evaluates to false (zero)

even before the first iteration.

The break statement can be used to come out of the while loop.

while:: Examples

int weight;

while (weight > 65) {

 printf ("Go, exercise, ");

 printf (“ … then come back. \n");

 printf ("Enter your weight: ");

 scanf ("%d", &weight);

 }

Sum of first N natural numbers

START

READ N

SUM = 0

COUNT = 1

SUM = SUM + COUNT

COUNT = COUNT + 1

IS

COUNT > N? OUTPUT SUM

STOP

YES NO

int main () {

 int N, count, sum;

 scanf (“%d”, &N) ;

 sum = 0; count = 1;

 while (count <= N) {

 sum = sum + count;

 count = count + 1;

 }

 printf (“Sum = %d\n”, sum) ;

 return 0;

}

Double your money

 Suppose your Rs 10000 is earning interest at 1% per month. How many months until you
double your money ?

my_money=10000.0;

n=0;

while (my_money < 20000.0) {

 my_money = my_money * 1.01;

 n++;

}

printf (“My money will double in %d months.\n”,n);

Maximum of inputs

printf (“Enter positive numbers to max, end with -1.0\n”);

max = 0.0; count = 0;

scanf(“%f”, &next);

while (next != 1.0) {

 if (next > max) max = next;

 count++;

 scanf(“%f”, &next);

}

printf (“The maximum number is %f\n”, max) ;

Printing a 2-D Figure

How would you print the following diagram?

* * * * *

* * * * *

* * * * *
repeat 3 times

 print a row of 5 stars

repeat 5 times

 print *

Nested Loops
#define ROWS 3

#define COLS 5

...

row=1;

while (row <= ROWS) {

 /* print a row of 5 *‟s */

 …

 printf(“\n”);

 row++;

}

while (col <= COLS) {

 printf (“* “);

 col++;

}

do-while statement

do statement while (expression)

main () {

 int digit=0;

 do

 printf(“%d\n”,digit++);

 while (digit <= 9) ;

}

statement

expression
F

T

The “for” statement is the most commonly used looping structure in C.

General syntax:

 for (expr1; expr2; expr3) statement

expr1: initializes loop parameters

expr2: test condition, loop continues if this is satisfied

expr3: used to alter the value of the parameters after each iteration

statement: body of the loop

for Statement

Sum of first N natural numbers

int main () {

 int N, count, sum;

 scanf (“%d”, &N) ;

 sum = 0;

 count = 1;

 while (count <= N) {

 sum = sum + count;

 count++;

 }

 printf (“Sum = %d\n”, sum) ;

 return 0;

}

int main () {

 int N, count, sum;

 scanf (“%d”, &N) ;

 sum = 0;

 for (count=1; count <= N; count++)

 sum = sum + count;

 printf (“Sum = %d\n”, sum) ;

 return 0;

}

2-D Figure

Print

* * * * *

* * * * *

* * * * *

#define ROWS 3

#define COLS 5

....

for (row=1; row<=ROWS; row++) {

 for (col=1; col<=COLS; col++) {

 printf(“*”);

 }

 printf(“\n”);

}

Another 2-D Figure

Print

*

* *

* * *

* * * *

* * * * *

#define ROWS 5

....

int row, col;

for (row=1; row<=ROWS; row++) {

 for (col=1; col<=row; col++) {

 printf(“* ”);

 }

 printf(“\n”);

}

The comma operator

We can give several statements separated by commas in place of “expression1”,

“expression2”, and “expression3”.

for (fact=1, i=1; i<=10; i++) fact = fact * i;

for (sum=0, i=1; i<=N; i++) sum = sum + i * i;

Specifying “Infinite Loop”

while (1) {

 statements

}

for (; ;)

{

 statements

}

do {

 statements

} while (1);

The break Statement

Break out of the loop { }

• can use with

• while

• do while

• for

• switch

• does not work with

• if

• else

Causes immediate exit from a while, do/while, for or switch structure.

Program execution continues with the first statement after the structure.

Example: Find smallest n such that n! exceeds 100

#include <stdio.h>

int main() {

 int fact, i;

 fact = 1; i = 1;

 while (i<10) { /* run loop –break when fact >100*/

 fact = fact * i;

 if (fact > 100) {

 printf ("Factorial of %d above 100", i);

 break; /* break out of the while loop */

 }

 i ++ ;

 }

}

The continue Statement

Skips the remaining statements in the body of a while, for or do/while structure.

• Proceeds with the next iteration of the loop.

while and do/while

• Loop-continuation test is evaluated immediately after the continue statement is

executed.

for structure

• expression3 is evaluated, then expression2 is evaluated.

An example with “break” & “continue”

fact = 1; i = 1; /* a program segment to calculate 10 !

while (1) {

 fact = fact * i;

 i ++ ;

 if (i<10)

 continue; /* not done yet ! Go to loop and perform next iteration*/

 break;

}

Some Examples

Example: Computing ex series up to N terms (1 + x + (x2 / 2!) + (x3 / 3!) + …)

START

READ X, N

TERM = 1

SUM = 0

COUNT = 1

SUM = SUM + TERM

TERM = TERM * X / COUNT

COUNT = COUNT + 1

IS
COUNT > N?

OUTPUT SUM

YES
NO

int main () {

 float x, term, sum;

 int n, count;

 scanf (“%d”, &x) ;

 scanf (“%d”, &n) ;

 term = 1.0; sum = 0;

 for (count = 0; count < n; count++) {

 sum += term;

 term = x/count;

 }

 printf (“%f\n”, sum) ;

}

Computing ex up to 4 decimal places

int main () {

 float x, term, sum;

 int n, count;

 scanf (“%d”, &x) ;

 scanf (“%d”, &n) ;

 term = 1.0; sum = 1.0;

for (count = 1; term<0.0001; count++) {

 term *= x/count;

 sum += term;

 }

 printf (“%f\n”, sum) ;

}

Example: Decimal to binary conversion

#include <stdio.h>

main()

{

 int dec;

 scanf (“%d”, &dec);

 do

 { printf (“%2d”, (dec % 2));

 dec = dec / 2;

 } while (dec != 0);

 printf (“\n”);

}

In which order are the bits printed?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5
7

Practice Problems

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5
8

ISBN Numbers

Checking for Legal ISBN Numbers

An ISBN number must:

• Contain 10 symbols , D1 ,.., D10 where D1 is a checksum between 1 and 10.

• If D1 is 10, then it is represented as X.

• The sum:

 10 * D10 + 9 * D9 + 8 * D8 + 7 * D7 + 6 * D6 + 5 * D5 + 4 * D4 + 3 * D3 + 2 * D2 + 1 * D1

 should be divisible by 11

• Given digits 2 to 10, the correct 1st digit has to be computed such that the remainder of

dividing the sum by 11 (unless the remainder is already 0)

10th 9th 8th 7th 6th 5th 4th 3rd 2nd 1st

D10 D9 D8 D7 D6 D5 D4 D3 D2 D1

Read the 9 digit integer and compute the weighted sum

#include <stdio.h>

int main(void) {

 int isbn, i, digit, sum=0;

 printf("Enter the first 9 digits of the ISBN Number:");

 scanf("%d",&isbn);

 // Compute the sum: 10 * D10 + 9 * D9 + … + 3 * D3 + 2 * D2

 for (i=2; i<=10; i++) {

 digit = isbn % 10 ;

 isbn = isbn / 10 ; // Note the use of integer division

 sum = sum + i * digit ;

 }

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6
0

Compute and print the checksum digit
#include <stdio.h>

int main(void) {

 int isbn, i, digit, sum=0;

 char checksum;

 printf("Enter the first 9 digits of the ISBN Number:");

 scanf("%d",&isbn);

 for (i=2; i<=10; i++) {

 digit = isbn % 10; isbn = isbn / 10; sum = i * digit;

 }

 if (sum % 11 == 1) checksum = „X‟;

 else if (sum % 11 == 0) checksum = „0‟;

 else checksum = '0„ + 11  (sum%11) ;

 printf(“Checksum digit = %c\n”, checksum);

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6
1

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6
2

BISECTION METHOD FOR ROOT FINDING

A method for finding the root of a function

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6
3

Observation: If the sign of f(a) and f(b) are different, then there is a root between a and b

In each iteration:

• Find the mid point, m, between a and b

• If f(a) and f(m) have opposite signs then revise b to m

• If f(b) and f(m) have opposite signs then revise a to m

Continue until desired accuracy is reached

Bisection Method for 4x3 – 3x2 + 2x – 5

int main(void)

{

 double a, b, m;

 printf("Enter initial left and right bounds:");

 scanf("%lf %lf", &a, &b); // For simplicity, we will assume that the bounds are valid

 while (to be explained)

 {

 m = (a + b) / 2;

 if ((4*b*b*b – 3*b*b + 2*b – 5) * (4*m*m*m – 3*m*m + 2*m – 5) >= 0) b = m;

 else a = m;

 }

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6
4

When to terminate?

int main(void)

{

 double a, b, m, margin;

 printf("Enter initial left and right bounds and the margin:");

 scanf("%lf %lf%lf", &a, &b, &margin);

 while ((b – a) > margin)

 {

 m = (a + b) / 2;

 if ((4*b*b*b – 3*b*b + 2*b – 5) * (4*m*m*m – 3*m*m + 2*m – 5) >= 0) b = m;

 else a = m;

 }

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6
5

Terminate after some iterations if it does not reach margin

int main(void)

{ double a, b, m, margin;

 int bound;

 printf("Enter initial left and right bounds , the margin, and iteration bound:");

 scanf("%lf%lf %lf%d", &a, &b, &margin, &bound);

 while (((b – a) > margin) && (bound > 0))

 { bound – – ;

 m = (a + b) / 2;

 if ((4*b*b*b – 3*b*b + 2*b – 5) * (4*m*m*m – 3*m*m + 2*m – 5) >= 0) b = m;

 else a = m;

 }

 printf (“Root = %lf\n”, (a+b)/2);

}
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6

6

