
Arrays 

Random access lists of elements 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
 

Pallab Dasgupta 

Professor,  

Dept. of Computer Sc & Engg 



INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
 

Basics of Arrays 



Array 

Many applications require multiple data items that have common characteristics. 

• In mathematics, we often express such groups of data items in indexed form: 

• x1, x2, x3, …, xn 

 

Array is a data structure which can represent a collection of data items which have the same 

data type ( float / int / char )  



Using Arrays 

All the data items constituting the group share the same name. 

int  x[10]; 

 

Individual elements are accessed by specifying the index. 

x[0] x[1] x[2] x[9] 

X is a 10-element one dimensional array 



Declaring Arrays 

Like variables, arrays must be declared before they are used. 

General syntax: 

    type   array-name [size]; 

 

• type specifies the data type of the array elements (int, float, char, etc.) 

• size is an integer constant representing the number of elements that can be stored in 

the array. 

 

 

 

• marks is an array containing a maximum of 5 integers. 

int   marks[5]; 



Examples: 

    int  x[10]; 

    char  line[80]; 

    float  points[150]; 

    char  name[35]; 

 

If we are not sure of the exact size of the array, we can define an array of a large size. 

    int   marks[50]; 

though in a particular run we may only be using, say, 10 elements. 



How is an array stored in memory? 

Starting from a given memory location, the successive array elements are allocated space in 

consecutive memory locations. 

 

 

• x: starting address of the array in memory 

• k: number of bytes allocated per array element 

 

a[i] is allocated memory location at address  x + i*k 

 

Array   a 



Accessing Array Elements 

A particular element of the array can be accessed by specifying two things: 

• Name of the array. 

• Index (relative position) of the element in the array. 

 

In C, the index of an array starts from zero. 

 

Example: 

• An array is defined as    int  x[10]; 

• The first element of the array x can be accessed as x[0], fourth element as x[3], tenth 

element as x[9], etc. 



Contd. 

The array index must evaluate to an integer between 0 and n – 1 where n is the number of 

elements in the array. 

 

 

    a[ x+2 ] =  25; 

    b[ 3*x – y ]  =  a[ 10 – x ] + 5; 

 



A Warning 

In C, while accessing array elements, array bounds are not checked. 

Example: 

int   marks[5]; 

: 

: 

marks[8] = 75; 

 

• This may cause a segmentation fault at runtime. 

• Not always !! 

• It may also result in unpredictable program results 



Initialization of Arrays 

General form: 

   type   array_name[size]  =  { list of values }; 

Examples: 

   int  marks[5]  = { 72, 83, 65, 80, 76 }; 

   char  name[4] = { „A‟, „m‟, „i‟, „t‟ }; 

 

Some special cases: 

• If the number of values in the list is less than the number of elements, the remaining 
elements are automatically set to zero. 

float  total[5] =  { 24.2,  12.5, 35.1} 

   causes the following assignments:  total[0] = 24.2  total[1] = 12.5 

      total[2] = 35.1  total[3] = 0  

                  total[4 ]= 0 



Contd. 

• The size may be omitted. In such cases the compiler automatically allocates enough 

space for all initialized elements. 

 

         int   flag[ ] = {1, 1, 1, 0}; 

         char  name[ ] = {„A‟, „m‟, „i‟, „t‟}; 



Character Arrays and Strings 

char C[8] = { 'a', 'b', 'h', 'i', 'j', 'i', 't', '\0' };  

The last (7th) location receives the null character „\0‟.  

 

Null-terminated character arrays are also called strings. 

 

Strings can be initialized in an alternative way.  

The last declaration is equivalent to:   char C[8] = "abhijit"; 

The trailing null character is missing here. C automatically puts it at the end.  

 

Note also that for individual characters, C uses single quotes, whereas for strings, it uses 

double quotes.   

 



INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
4

 

Examples 



Finding the minimum of a set of 10 numbers 

#include  <stdio.h> 

main() 

{  

 int  a[10], i, min; 

 

     for  (i=0; i<10; i++) scanf (“%d”, &a[i]); 

 

     min = a[0]; 

     for  (i=1; i<10; i++) 

     { 

          if  (a[i] < min) min = a[i]; 

     } 

     printf (“\n Minimum is %d”, min); 

} 



Slightly modified version 

#define SIZE 100 

#include  <stdio.h> 

main() 

{  

 int  a[SIZE], i, min, N; 

 

 scanf(“%d”, &N); 

     for  (i=0; i < N; i++) scanf (“%d”, &a[i]); 

 

     min = a[0]; 

     for  (i=1; i < N; i++) 

     { 

          if  (a[i] < min) min = a[i]; 

     } 

     printf (“\n Minimum is %d”, min); 

} 



Computing GPA 
#define  SUBJECTS  6 

#include  <stdio.h> 

 

main( ) 

{ 

    int  grade_pt[SUBJECTS],  credit[SUBJECTS],  k, gp_sum=0, cred_sum=0, GPA; 

 

    for  ( k=0; k < SUBJECTS; k++ )  scanf (“%d %d”, &grade_pt[k], &cred[k]); 

 

    for  ( k=0; k < SUBJECTS; k++ ) 

    { 

         gp_sum += grade_pt[ k ] * credit[ k ]; 

         cred_sum += credit[ k ]; 

    } 

    GPA = gp_sum / cred_sum; 

    printf (“\n Grade point average:  is %d”, GPA); 

} 

Grade  points received in 

the different subjects  

Credits of the 

different subjects  



Things you cannot do 

You cannot do the following: 

 

• Use = to assign one array a to another array b 

    a = b;  

 

• Use == to directly compare array variables 

   if  (a = = b)  ……….. 

 

• Directly scanf or printf arrays 

   printf (“……”, a); 



How to copy the elements of one array to another? 

 

By copying individual elements: 

     

for  ( j=0 ; j<25 ; j++ )  a[ j ] = b[ j ]; 



How to read the elements of an array? 
 

By reading them one element at a time 

    for  ( j=0 ; j<25 ; j++ ) scanf ( “%f”, &a[ j ] ); 

 

The ampersand (&) is necessary. 

The elements can be entered all in one line or in different lines. 



How to print the elements of an array? 

 

By printing them one element at a time. 

            

for  ( j=0 ; j<25 ; j++ ) printf ( “\n %f”, a[ j ] ); 

• The elements are printed one per line. 

 

for  ( j=0 ; j<25 ; j++ ) printf ( “ %f”, a[ j ] ); 

• The elements are printed all in one line (starting with a new line). 



INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
2

 

Arrays and Functions 



Passing Arrays to Function 

Array element can be passed to functions as ordinary arguments. 

 

isFactor ( x[ k ], x[ 0 ] )  

 

sin ( x[ 5 ] ) 

 



Passing an entire array to a function 

An array name can be used as an argument to a function. 

• Permits the entire array to be passed to the function. 

• The way it is passed differs from that for ordinary variables. 

 

Rules: 

• The array name must appear by itself as argument, without brackets or subscripts. 

• The corresponding formal argument is written in the same manner. 

• Declared by writing the array name with a pair of empty brackets. 



Array as input parameter #define ASIZE 5 

float average ( int a[ ] ) { 

 int k, total=0; 

 for ( k=0; k<ASIZE;  k++ ) 

  total = total + a[ k ]; 

 return ( (float) total  / (float) ASIZE ); 

} 

 

main ( )  { 

      int x[ASIZE]  = {10, 20, 30, 40, 50}; float xavg;  

 xavg = average (x) ; 

} 



Modified – variable number of 

elements in the array 
#define ASIZE 100 

float average ( int a[ ], int N )  { 

 int k, total=0; 

 for ( k=0; k<N;  k++ ) 

  total = total + a[ k ]; 

 return ( (float) total  / (float) ASIZE ); 

} 

 

main ( )  { 

      int x[ASIZE]  = {10, 20, 30, 40, 50};  

      int Z = 5; float xavg;  

 xavg = average (x, Z) ; 

} 

Note that the size of the array 

is not passed as a parameter.  

 

But we need to pass N, the 

actual number of data in the 

array. 



Arrays can also be used as Output Parameters 
void VectorSum (int a[ ], int b[ ], int vsum[ ], int length)  { 

 int i; 

 for (i=0; i<length; i=i+1) vsum[ i ] = a[ i ] + b[ i ] ; 

} 

void PrintVector (int a[ ], int length)  { 

 int i; 

 for (i=0; i<length; i++) printf (“%d “, a[i]); 

} 

int main (void) { 

 int x[3] = {1,2,3},  y[3] = {4,5,6},  z[3]; 

 VectorSum (x, y, z, 3); 

 PrintVector (z, 3) ; 

} 

  



The Actual Mechanism 

When an array is passed to a function, the values of the array elements are not passed 

to the function. 

• The array name is interpreted as the address of the first array element. 

• The formal argument therefore becomes a pointer to the first array element. 

• When an array element is accessed inside the function, the address is calculated 

using the formula stated before. 

• Changes made inside the function are thus also reflected in the calling program. 



Passing arrays as parameters 

Passing parameters in this way is called  

        call-by-reference. 

Normally parameters are passed in C using 

        call-by-value. 

 

Basically: 

• If a function changes the values of array elements, then these changes will be made to the 

original array that is passed to the function. 

• This does not apply when an individual element is passed on as argument. 



INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
0

 

Examples 



A function for reversing an array 

Reversing A = { 1, 2, 0, 5, 3 } results is A = { 3, 5, 0, 2, 1 } 

 

void reverse( int x[ ], int n ) 

{  int k, temp; 

 for ( k=0;  k < n;  k++ ) { 

  temp = x[ k ] ; 

  x[ k ] = x[ n – k – 1 ] ; 

  x[ n – k – 1 ] = temp;   

 } 

} 

 

What‟s wrong in this code? 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
1

 



Bubble Sort 

Sorting A = { 1, 2, 0, 5, 3 } results is A = { 0, 1, 2, 3, 5 } 

 

void bubblesort( int x[ ], int n ) 

{  int  j, k, temp; 

 

 for ( j=0; j < n – 1; j++ )   

  for ( k=0;  k < n – j – 1;  k++ ) { 

 

   if ( x[ k ] > x[ k + 1] ) { 

    temp = x[ k ] ;  x[ k ] = x[ n – k – 1 ] ; x[ n – k – 1 ] = temp;  

   }  

  } 

 } 

} 

 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
2

 



Finding the largest contiguous sequence of equal numbers  

The largest sequence of equal numbers in A = { 1, 1, 2, 2, 0, 0, 0, 1, 1, 5, 3 } is 0, 0, 0 (A[4] – A[6])  

 

k = 0;   maxbegin = 0;    maxcount = 1;  

while ( k < N ) 

{ 

 ssbegin = k;  count = 1; 

 while ( x[ k ] == x[ k+1 ] ) { 

  k++; count++; 

  if ( k == N – 1 ) break; 

 } 

 if ( count > maxcount ) { maxbegin = ssbegin; maxcount = count; } 

 k++; 

} 

printf( “Sequence starting from x[ %d ] = “, maxbegin ); 

for ( k=0; k < maxcount; k++ ) printf(“%d, “, x[k] ); printf (“\n”); 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
3

 


