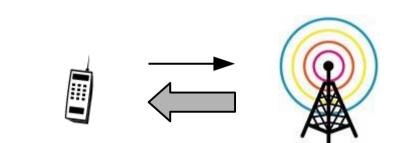
Mobile Computing #MC07 Device Management

CS60002: Distributed Systems Winter 2006-2007

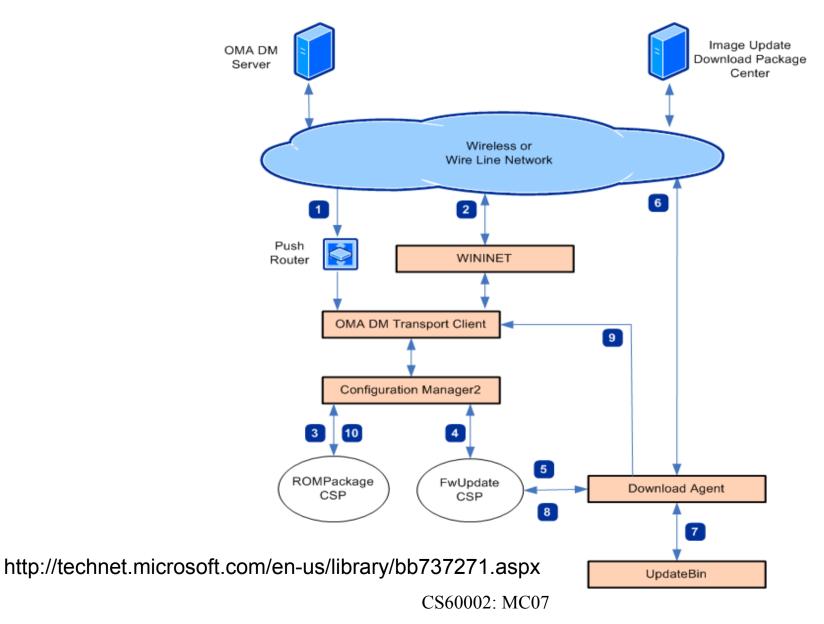
CS60002: MC07

Today

- Device databases
 - Flash, OR/direct
- Synchronization
 - Algorithms
- Push/notifications
 - Scale to MM
- Handheld design
 - CPU, RTOS, battery


- Core Mobile Apps
 - Email/IM, PDA, browse
- IP Protocols
 - IMS
- Broadcast
 - Algorithms
- Device Management
 - Software & Config

Agenda


- What is Device Management?
 - Definition, Example
- Standards and Products
 - OMA-DM, Startups
- Constraints
 - Access rights, memory, bandwidth, ...
- Algorithm
 - In-place reconstruction

Device Management (DM)

- What?
 - Update mobile
 - Over-the-air (OTA)
- Why?
 - Firmware upgrade
 - Software distribution
 - Service provisioning
 - Diagnostics
 - Application data

Example: DM for MS Mobile

OMA-DM

- Open Mobile Alliance Device Management
 - Originally developed by SyncML Initiative
 - Specifies protocols and Object Model
- DM Specs
 - Protocols
 - Bootstrap, Device Management, Representation
 - Management objects: 3 mandatory
 - DMAcc, DevInfo, DevDetail
 - Additional information
 - http://www.openmobilealliance.org/Technical/release_pro gram/dm_v1_2.aspx

CS60002: MC07

Products

- Lots of startups
 - Bitfone, BrightPoint, InnoPath, Insignia, mFormation, MobileThink, Perelgo, RedBend, Sicap, SmartTrust, Synchronica, WDSGlobal, ...
- Plus, mature players
 - Ericsson, Motorola, Nokia, ...
 - HP, IBM, Microsoft, ..
- Shared challenges
 - 18 month lifecycle for mobiles
 - Frenetic pace of development

Constraints

- Shared with PC upgrades
 - Access control
 - Scheduling
 - Patch computation
 - Atomicity
- New or emphasized in mobile computing
 - Backup/restore
 - Bandwidth
 - Memory

DM and Access Control

- Who can manage?
 - User
 - Employer/Parent
 - Wireless carrier
 - OS/Firmware vendor
 - Device manufacturer

- Role management
 - Applications
 - User, Employer
 - Service provisioning
 - Employer, Carrier
 - Bugfix, new features
 - Carrier, OS Vendor
 - Critical bugfix
 - Carrier

DM and Scheduling

- Imagine 4B mobiles * 1GB memory each
 - That will be a lot of data to manage OTA
 - We are not that far off!
 - Scheduling is important
 - Remember, PC's do not share spectrum!
- Resources to schedule
 - Carrier networks
 - Coverage (roaming), battery
 - User and employer constraints

DM and Patch Computation

- How to transform V2.3 to V2.4?
 - See your notes from lecture MC03: Synchronization
 - "Three problems in code sync"
 - Small patches
 - Data compression
 - Patch application
 - Rsync, prefix sort, bsdiff
- But, not every mobile has the same V2.3!
 - Older versions. Updates to V2.3. Optional modules.

DM and Patch Computation

- Patch "pre V 2.4" to V 2.4
 - Problem similar to PC updates
 - But, bandwidth, cpu & battery are more constrained
- Strategies
 - Digital hashes as shorthand for device configuration
 - Maintain LRU cache of patches at Server
 - Wait until mobile docked to PC over USB/Bluetooth

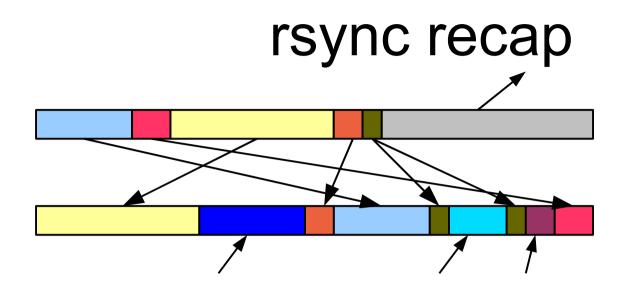
DM and Atomicity

- Incomplete DM => Brick!
 - Restore to a known state on failure
- Three phases
 - Authentication and Identification (interrupts are ok)
 - Downloads (interrupts are expected)
 - Update (interrupts can be fatal)
- How to make update atomic?
 - Ensure conditions needed for success
 - Rollback on failure

DM and Atomicity

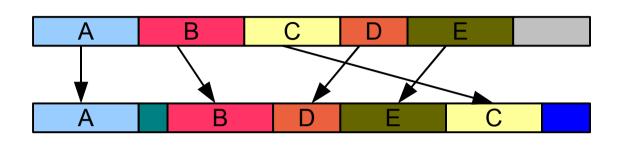
- Ensure conditions needed for success
 - Ensure battery
 - User confirmation and UI lock
- Rollback on failure
 - Technical challenge
 - Similar to atomicity in database products, but ..
 - Without machinery like write-ahead logs
 - With more stringent memory limitations
 - Blackboard discussion (time permitting)

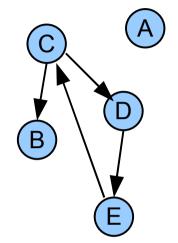
DM and Backup/Restore


- Backup before DM, restore after DM
 - Mobiles not considered reliable persistent store
 - Obviate reformatting of data on mobile
- Challenges
 - Size of backup/restore
 - May resort to USB, not OTA
 - Potential for lost updates during the DM operation
 - Security of backups

DM and Bandwidth Optimization

- Avoid backup/restore
 - Reformat data in-place
 - Or serialize/deserialize
- Minimize size of patch files
 - See discussion of bsdiff in an earlier lecture
- Data compression
 - But, respect CPU and battery on mobile
- There is always USB!


DM and Memory Constraints


- Disclaimer
 - Dropping Flash prices may obviate this in future
- Memory on mobiles
 - Often managed by firmware/software
 - .. that is being upgraded!
 - Often near 100% utilization
 - Thanks to digital cameras
- DM with memory constraints
 - Perform updates "in-place"

- File synchronization problem
 - Bob wishes to have Alice's copy
 - Should Alice just send the whole file to Bob?
 - No. rsync can help
 - Andrew Tridgell, Paul Mackerras, "The rsync algorithm", http://rsync.samba.org/tech_report/tech_report.html

Read-write interval conflict

- CRWI graph
 - Conflicting read-write intervals
 - Copy commands are nodes
 - Directed edges (C, B) and (C, D) denote that copy(C) must precede copy(B) and copy(B)
 - Imposes a partial order on the copy commands

Cycles in CRWI Graph

- Denote circular dependency of copy commands
- How to break cycles?
 - Eliminate nodes
 - Replace a copy command by a bulky add command
 - Or, concede use of temporary storage
 - Trim nodes
 - Break C into parts C'+C"; only one conflicts with D
- Breaking cycles adds communication
 - Add commands are bulkier than copy commands
 - Can we find an optimal way to break cycles?

Breaking Cycles

- General digraphs
 - Feedback vertex problem is NP-Complete (Karp 72)
- Optimal communication w/o in-place constraint
 - Can be done in polynomial time
- What about CRWI digraphs?
 - Still NP-Complete
 - Maybe CWRI is not the right formulation
 - Optimal communication w. in-place is NP-complete!

In-place reconstruction heuristics

- They work well in practice
 - Linear time graph traversal (say, DFS)
 - Simple heuristics (e.g., delete smallest copy node)
 - But, no linear bound on increased communication
- Reading assignments
 - Optional
 - "In-Place Reconstruction of Version Differences", Burns, Stockmeyer, and Long
 - Required
 - "In-Place Rsync: File Synchronization for Mobile and Wireless Devices", David Rasch and Randal Burns

CS60002: MC07

Recap

- What is Device Management?
 - Definition, Example
- Standards and Products
 - OMA-DM, Startups
- Constraints
 - Access rights, memory, bandwidth, ...
- Algorithm
 - In-place rsync/reconstruction
 - Reading assignment

CS60002: MC07