Matchings and Factors

Matchings

- A *matching* of size *k* in a graph G is a set of *k* pairwise disjoint edges.
 - The vertices belonging to the edges of a matching are *saturated* by the matching; the others are *unsaturated*.
 - If a matching saturates every vertex of G, then it is a *perfect matching* or *1-factor*.

Alternating Paths

- Given a matching M, an *M-alternating path* is a path that alternates between the edges in M and the edges not in M.
 - An M-alternating path P that begins and ends at M-unsaturated vertices is an *M-augmenting path*
 - Replacing $M \cap E(P)$ by E(P) M produces a new matching M' with one more edge than M.

Symmetric Difference

- If G and H are graphs with vertex set V, then the symmetric difference G∆H is the graph with vertex set V whose edges are all those edges appearing in exactly one of G and H.
 - If M and M' are matchings, then $M \Delta M' = (M \cup M') - (M \cap M')$

• A matching M in a graph G is a *maximum matching* in G iff G has no M-augmenting path.

Bipartite Matching

When G is a bipartite graph with bipartition *X*, *Y* we may ask whether G has a matching that saturates *X*.

– We call this a matching of X into Y.

[Hall's Theorem: 1935]

If G is a bipartite graph with bipartition X, Y, then G has a matching of X into Y if and only if $|N(S)| \ge |S|$ for all S \subseteq X.

 For k>0, every k-regular bipartite graph has a perfect matching.

Vertex Cover & Bipartite Matching

- A vertex cover of G is a set S of vertices such that S contains at least one endpoint of every edge of G.
 - The vertices in S *cover* the edges of G.
- If G is a bipartite graph, then the maximum size of a matching in G equals the minimum size of a vertex cover of G.

[König and Egerváry: 1931]

- An *edge cover* of G is a set of edges that cover the vertices of G.
 - only graphs without isolated vertices have edge covers.

Notation...

- We will use the following notation for independence and covering problems
- $\alpha(G)$:maximum size of independent set $\alpha'(G)$:maximum size of matching $\beta(G)$:minimum size of vertex cover $\beta'(G)$:minimum size of edge cover

Min-max Theorems

- In a graph G, S_⊆V(G) is an independent set if and only if S' is a vertex cover, and hence α(G) + β(G) = n(G).
- If G has no isolated vertices, then $\alpha'(G) + \beta'(G) = n(G)$.
- If G is a bipartite graph with no isolated vertices, then α(G) = β'(G) (max independent set = min edge cover)

Augmenting Path Algorithm

Input:

 A bipartite graph G with a bipartition X, Y, a matching M in G, and the set U of all Munsaturated vertices in X.

Idea:

- Explore *M*-alternating paths from U, letting $S \subseteq X$ and $T \subseteq Y$ be the sets of vertices reached.
- Mark vertices of S that have been explored for extending paths.
- For each $x \in (S \cup T) U$, record the vertex before x on some *M*-alternating path from U.

Augmenting Path Algorithm

Initialization: Set S=U and $T=\phi$ Iteration:

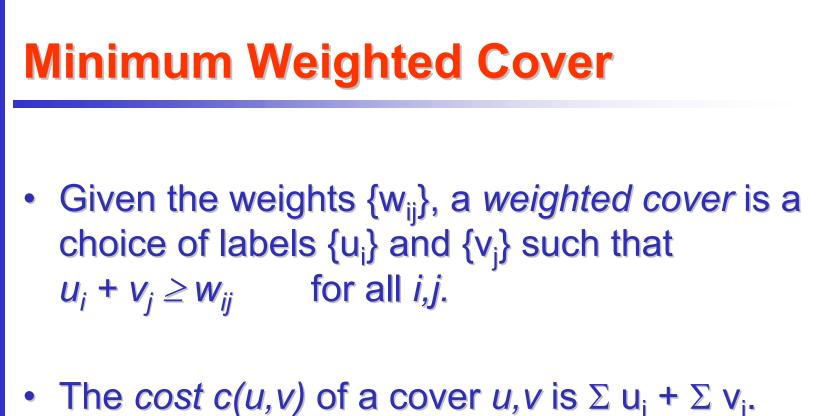
- If S has no unmarked vertex, the stop and report $T \cup (X-S)$ as a minimum cover and M as a maximum matching.
- Otherwise, select an unmarked $x \in S$.
- To explore x, consider each y∈N(x) such that xy ∉M. If y is unsaturated, terminate and trace back from y to report an M-augmenting path from U to y. Otherwise, y is matched to some w∈X by M. In this case, include y in T and w in S.
- After exploring all such edges incident to x, mark x and iterate.

Augmenting Path Algorithm

- Repeated application of the Augmenting Path Algorithm to a bipartite graph produces a matching and vertex cover of the same size.
 - The complexity of the algorithm is $O(n^3)$.
 - Since matchings have at most n/2 edges, we apply the augmenting path algorithm at most n/2 times.
 - In each iteration, we search from a vertex of X at most once, before we mark it. Hence each iteration is O(e(G)), which is O(n²).

Weighted Bipartite Matching

- A transversal of an n X n matrix A consists of n positions – one in each row and each column.
 - Finding a transversal of *A* with maximum sum is the assignment problem.
 - This is the matrix formulation of the maximum weighted matching problem, where A is the matrix of weights w_{ij} assigned to the edges x_iy_j of $K_{n,n}$ and we seek a perfect matching M with maximum total weight w(M).



- The *minimum weighted cover problem* is the problem of finding a cover of minimum cost.

Min Cover & Max Matching

- If M is a perfect matching in a weighted bipartite graph G and u,v is a cover, then $c(u,v) \ge w(M)$.
 - Furthermore, c(u,v) = w(M) if and only if M consists of edges x_iy_j such that $u_i + v_j = w_{ij}$. In this case, M is a maximum weight matching and u,v is a minimum weight cover.

Hungarian Algorithm

Input: A matrix of weights on the edges of $K_{n,n}$ with bipartition X, Y.

Idea: Maintain a cover u,v, iteratively reducing the cost of the cover until the equality subgraph $G_{u,v}$ has a perfect matching.

Initialization: Let u, v be a feasible labeling, such as $u_i = max_j w_{ij}$ and $v_j = 0$, and find a maximum matching M in $G_{u,v}$.

Hungarian Algorithm

Iteration:

CSE, IIT KGP

- If M is a perfect matching, stop and report M as a maximum weight matching.
- Otherwise, let U be the set of M-unsaturated vertices in X.
- Let S be the set of vertices in X and T the set of vertices in Y that are reachable by M-alternating paths from U. Let

 $\varepsilon = \min\{u_i + v_j - w_{ij}: x_i \in S, y_j \in Y - T\}$

Decrease u_i by ε for all x_i∈S, and increase v_j by ε for all y_j∈T. If the new equality subgraph G' contains an M-augmenting path, replace M by a maximum matching in G' and iterate. Otherwise, iterate without changing M.

Hungarian Algorithm

• The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover.

Stable Matchings

- Given *n* men and *n* women, we wish to establish *n* stable marriages.
 - If man x and woman a prefers each other over their existing partners, then they might leave their current partners and switch to each other.
 - In this case we say that the unmatched pair (x,a) is an unstable pair.
 - A perfect matching is a stable matching if it yields no unstable matched pair.

Gale-Shapley Proposal Algorithm

Input: Preference rankings by each of *n* men and *n* women.

Iteration:

- Each man proposes to the highest woman on his preference list who has not previously rejected him.
- If each woman receives exactly one proposal, stop and use the resulting matching.
- Otherwise, every woman receiving more than one proposal rejects all of them except the one that is highest on her preference list.
- Every woman receiving a proposal says "maybe" to the most attractive proposal received.

The algorithm produces a stable matching.

Matchings in General Graphs

- A *factor* of a graph G is a spanning subgraph of G.
 - A k-factor is a spanning k-regular sub-graph.
 - An odd component of a graph is a component of odd order; the number of odd components of H is o(H).
- [Tutte 1947]: A graph G has a 1-factor if and only if $o(G S) \le |S|$ for every $S \subseteq V(G)$.
- [Peterson 1891]: Every 3-regular graph with no cutedge has a 1-factor.

Edmond's Blossom Algorithm

- Let M be a matching in a graph G, and let *u* be an M-unsaturated vertex.
- A *flower* is the union of two *M*-alternating paths from *u* that reach a vertex *x* on steps of opposite parity.
- The stem of the flower is the maximal common initial path.
- The *blossom* of the flower is the odd cycle obtained by deleting the stem.

Edmond's Blossom Algorithm

Input: A graph G, a matching M in G, and an M-unsaturated vertex *u*.

```
Initialization: S = \{u\} and T = \{\}
```

Iteration:

- Is S has no unmarked vertex, stop
- Otherwise, select an unmarked vertex $v \in S$. To explore from v, successively consider each $y \in N(v)$ such that $y \notin T$.
- If y is unsaturated by M, then trace back from y to report an M-augmenting u,y-path.
- If $y \in S$, then a blossom has been found. Contract the blossom and continue the search from this vertex in the smaller graph.
- Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S.
- After exploring all such neighbors of v, mark v and iterate.

