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Logical Deduction versus Induction

DEDUCTION

Commonly associated with formal logic

Involves reasoning from known
premises to a conclusion

The conclusions reached are inevitable,
certain, inescapable

INDUCTION

Commonly known as informal logic or
everyday argument

Involves drawing uncertain inferences
based on probabilistic reasoning

The conclusions reached are probable,
reasonable, plausible, believable
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»when you have eliminated
all which is impossible,
then whatever remains,

however improbable, must

be the truth.”

-sherlock holmes




Handling uncertain knowledge

 Classical first order logic has no room for uncertainty

Vp Symptom(p, Toothache) = Disease(p, Cavity)

* Not correct - toothache can be caused in many other cases
 Infirst order logic we have to include all possible causes
Vp Symptom(p, Toothache) = Disease(p, Cavity) v Disease(p, GumDisease)
v Disease(p, ImpactedWisdom) v ...

 Similarly, Cavity does not always cause Toothache, so the following is also not true

Vp Disease(p, Cavity) = Symptom(p, Toothache)
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Reasons for using probability

« Specification becomes too large
 Itis too much work to list the complete set of antecedents or consequents needed to ensure an
exception-less rule
* Theoretical ignorance

« The complete set of antecedents is not known

e Practical ignorance

e The truth of the antecedents is not known, but we still wish to reason
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Predicting versus Diagnosing

» Probabilistic reasoning can be used for predicting outcomes ( from cause to effect )

« Given that | have a cavity, what is the chance that | will have toothache?

 Probabilistic reasoning can also be used for diagnosis ( from effect to cause )

« Given that | am having toothache, what is the chance that it is being caused by a cavity?

We need a methodology for reasoning that can work both ways.
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Axioms of Probability

1. All probabilities are betweenOand 1: 0<P(A)<L1
2. P(True)=1and P(False) =0
3. P(AvB)=P(A)+P(B)-P(AAB)

Bayes’ Rule
P(A A B)
P(A A B)

P(A|B) P(B)

P(B | A) P(A)

P(A|B) P(B)
P(A)

P(B[A)=
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Bayesian Belief Network

P(Obesity)

. 0.24 History of ] [ History of viral ]
[ Obesity ] [ alcohol abuse hepatitis

Hepatitic steatosis]—)[ Cirrhosis }

Chronic Hepatitis

History | P(Chronis
of VH | Hepatitis)
T 0.3

F 0.05

|

/|

[Triglycerides] [ AST

AST: Aspartate aminotransferase
ALT: Alanine aminotransferase

e Given: conditional probability tables [ Jaundice ]
» Evidence nodes: truths of known variables
» (Goal: Find probabilities of other variables and/or their combinations
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[ Total bilirubin ] [ Fatigue ]




Belief Networks

A belief network is a graph with the following:
e Nodes: Set of random variables

« Directed links: The intuitive meaning of a link from node X to node Y is that X has a
direct influence on Y

Each node has a conditional probability table that quantifies the effects that the parent have
on the node.

The graph has no directed cycles. It is a directed acyclic graph (DAG).
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Classical Example

e Burglar alarm at home

« Fairly reliable at detecting a burglary

» Responds at times to minor earthquakes

« Two neighbors, on hearing alarm, calls police

« John always calls when he hears the alarm, but sometimes confuses the telephone ringing
with the alarm and calls then, too.

« Mary likes loud music and sometimes misses the alarm altogether
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Belief Network Example

Burglary

P(E)
Earthquake
0.002

P(A)
0.95
0.95
0.29
0.001

A [Py
MaryC&D T [070

F10.01

m|mM| ||
M| |7 | |m
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The joint probability distribution
« Ageneric entry in the joint probability distribution P(x,, ..., X,) IS given by:

P(X,....X )= ﬁ P(x; | Parents(X.))

Burglary Earthquake

P(A)
0.95
0.95
0.29
0.001

M| 4| 4| w
M| |m|d|m
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The joint probability distribution

 Probability of the event that the alarm has sounded but neither a
burglary nor an earthquake has occurred, and both Mary and John call:

P(\]/\MAA/\_IB/\_IE)
=P(J|A) P(M|A) P(A|—-B A—=E) P(—B) P(—E)
=0.9X0.7 X0.001 X0.999 X 0.998
= 0.00062
Burglary Earthqu@
B|E| P(A)
T|T]0.95
TIF|095 [|A |PQ) ||A |PM)
F{T[029 ||T [0.90 ||T |0.70 [|PE) ||P(B) MarycaB
FIF|o.001 ||F 005 ||[F [0.01 ][0.002 ||0.001
(Q\
i
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The joint probability distribution

« Computation of the probabilities of several different event combinations of
the Burglary-Alarm belief network example:

P(B)  =0.001
P(B) =1-P(B)=0.999
P(E) =0.002
P(E) =1-P(E)=0.998
B|E| P(A)
TIT1]0.95
TIF|095 [|A |PQ) ||A |PM)
FIT|020 [|T (090 []|T 070 |[|PE) ||P(B)
FIF|o.001 ||F 005 ||[F [0.01 ][0.002 ||0.001
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The joint probability distribution

« Computation of the probabilities of several different event combinations of the Burglary-
Alarm belief network example:

P(A) = P(AB’E’) + P(AB'E) + P(ABE’) + P(ABE)
= P(A| B’E’).P(B’E") + P(A | B’E).P(B’E) + P(A | BE).P(BE’) + P(A | BE).P(BE)
= 0.001 x 0.999 x 0.998 + 0.29 x 0.999 x 0.002 + 0.95 x 0.001 x 0.998 + 0.95 x 0.001 x 0.002
= 0.001 + 0.0006 + 0.0009 = 0.0025

B|E| P(A)
T|F|{095 [|A [PQ) []A |P(M)

FIT|020 [|T (090 []|T 070 |[|PE) ||P(B)

FIF|o0.001 [|F 005 ||F |0.01 ]{0.002 ||0.001
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The joint probability distribution: Find P(J)

PQJ) =P(JA) + P(JA)
= P(J | A).P(A) + P(J | A).P(A)
= 0.9 x 0.0025 + 0.05 x (L - 0.0025)

=0.052125
P(AB) =P(ABE) + P(ABE’) = 0.95 x 0.001 x 0.002 + 0.95 x 0.001 x 0.998
= (0.00095
B|E| P(A)
TIF|095 [|A |PQ) ||A |PM)
FIT|020 [|T (090 []|T 070 |[|PE) ||P(B)
FIF|o.001 ||F 005 ||[F [0.01 ][0.002 ||0.001
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The joint probability distribution: Find P(A’'B) and P(AE)

P(A'B)

P(A'BE) + P(A'BE")
P(A’ | BE).P(BE) + P(A’ | BE").P(BE)

(1-0.95) x 0.001 X 0.002
+(1-0.95) x 0.001 x 0.998
= 0.00005
P(AE) = P(AEB) + P(AEB’)
= 0.95 x 0.001 x 0.002 + 0.29 x 0.999 x 0.002 = 0.00058

B|E| P(A)
T|T|0.95

T|F|{095 [|A [PQ) []A |P(M)

FIT|020 [|T (090 []|T 070 |[|PE) ||P(B)
FIF|o0.001 [|F 005 ||F |0.01 ]{0.002 ||0.001
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The joint probability distribution

P(AE) =P(AE’'B) + P(AE'B)
= 0.95 x 0.001 x 0.998 + 0.001 x 0.999 x 0.998
= 0.001945

P(AE’) =P(AE'B) + P(NE'B)
= P(A | BE').P(BE’) + P(A’ | B'E’).P(B'E’)

8] E] P(A) =(1-0.95) x 0.001 x 0.998 + (1 -0.001) x 0.999 x 0.998 = 0.996
T|T]0.95
Burgl
T|F[095 [|A [PUJ) ||A |PM) Earthqua@
FIT|029 [|T {090 [T [0.70 [| P(E) || P(B)
F|F|0.001 [[F [0.05 ||F [0.01 [40.002 |{0.001
MaryCallD ~
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The joint probability distribution: Find P(JB)

P(JB) =P(JBA)+P(JBA)

= P(J | AB).P(AB) + P(J | A'B).P(A'B)

=P(J | A).P(AB) + P(J | A').P(A'B)

= 0.9 x 0.00095 + 0.05 x 0.00005

=0.00086

Burglary Earthqu@

B| E|P(A)
T|T|095
T|F[095 [[A [PQ) [|A |PM)
FIT{029 ||[T {090 [T |0.70 ||P(E) [|P(B) MaryCa@
F|F|o.001 [[F |0.05 |[F |0.01 ][0.002 ||o0.001
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The joint probability distribution

« Computation of the probabilities of several different event combinations of the Burglary-
Alarm belief network example:

P(J | B) = P(JB) / P(B) = 0.00086 / 0.001 = 0.86

Earthqu@

B|E| P(A)
T|T]0.95
T|F|095 ||A [PQ) [|A [P(M)
FlTlo29 [|T (090 |[T |0.70 || P(E P(B

L ) MaryCa@
FIElo0o001 |lF 005 ||F [0.01 |[0.002 ||0.001

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR



The joint probability distribution

P(MB) = P(MBA) + P(VBA)
- P(M | AB).P(AB) + P(M | AB).P(A'B)
=P(M|A).P(AB) + P(M | A").P(A'B)
=0.7 x 0.00095 + 0.01 x 0.00005
=0.00067
Burglary Earthqu@
B[ E] P(A)
T T/095
T|Fl0.95 [[A |PQ) |[A [PMV)
FlT020 |[T [090 |[1 o0 [[rE) |[PE)
F|F|ooor |[F [oos |{F [001 |[0.002 |[o.001 MaryCa@
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The joint probability distribution

P(M | B) = P(MB) / P(B) = 0.00067 / 0.001 = 0.67
P(B | J) =P(IB)/P(J) = 0.00086 / 0.052125 = 0.016
(
(

N

/P
B | A) = P(AB) / P(A) = 0.00095 / 0.0025 = 0.38
B | AE) = P(ABE) / P(AE) = [ P(A | BE).P(BE) ]/ P(AE)
= [0.95 x 0.001 x 0.002 ] / 0.00058

N

=0.003
B| E| P(A)
T|T1]0.95
TIF|095 [[|A |PQ) ||A |P(M)
FIT{029 |[T [090 ||T [0.70 |[P(E) || P(B)
FIF|0.001 ||F |005 ||F [0.01][0.002 [|0.001
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The joint probability distribution

« Computation of the probabilities of several different event combinations of the Burglary-
Alarm belief network example:

P(AJE") =P(J | AE’).P(AE’) = P(J | A).P(AE")
= 0.9 X 0.001945 = 0.00175
P(AJE') = P(J | AE)).P(AE) = P(J | A).P(AE)
= 0.05 X 0.996 = 0.0498
PJE’) = P(AJE) + P(A'JE) = 0.00175 + 0.0498 = 0.05155

B|E| P(A)
T|T|0.95

T|F|{095 [|A [PQ) []A |P(M)

FIT|020 [|T (090 []|T 070 |[|PE) ||P(B)
FIF|o0.001 [|F 005 ||F |0.01 ]{0.002 ||0.001
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The joint probability distribution

P(A| JE)) =P(AJE) / P(JE’) = 0.00175 / 0.05155 = 0.03

Burglary Earthqu@

B|E| P(A)
T|T[0.95

T|F[0.95 [|A [PQ) []A |P(M)

FIT|029 |[T {090 [[T |0.70 ||P(E) |[|P(B) I\/IaryCaD
FIF|0.001 [|F 005 ||F |0.01 ]{0.002 ||0.001
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The joint probability distribution

P(BJE") = P(BJE’A) + P(BJE'A)

= P(J | ABE").P(ABE’) + P(J | ABE").P(A'BE)

= P(J | A).P(ABE’) + P(J | A").P(A'BE)

= 0.9 X 0.95 x 0.001 x 0.998 + 0.05 x (1 — 0.95) x 0.001 X 0.998

= 0.000856
P(B | JE") = P(BJE’) / P(JE’) = 0.000856 / 0.05155 = 0.017
B| E| P(A)
T|T|0.95 Earthquake
T|F[095 [[A [PQ) |[A [PMM)
FlTlo20 [[T 090 [[T o070 ||PE) [[P(B)
F|F|o.001 |[F |o.05 |[F |o.01 |o.002 |[0.001 MaryCalls
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Inferences using belief networks

» Diagnostic inferences (from effects to causes)

e Given that JohnCalls, infer that
P(Burglary | JohnCalls) =0.016

Burglary EarthquakD

o Causal inferences (from causes to effects)

MaryCalls

 Given Burglary, infer that
P(JohnCalls | Burglary) = 0.86
P(MaryCalls | Burglary) = 0.67
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Inferences using belief networks

 Inter-causal inferences (between causes of a common effect)

 Given Alarm, we have P(Burglary | Alarm) = 0.376
* |f we add evidence that Earthquake is true, then P(Burglary | Alarm A Earthquake) = 0.003

 Mixed inferences

o Setting the effect JohnCalls to true and the cause Earthquake to false gives
P(Alarm | JohnCalls A — Earthquake) = 0.003

EarthquakD

MaryCalls
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Exercise

tifﬂ
06 | 04
g
i%d%| o3
i%d' | 0.05
-1 0 .0 1
it.d"109 | 008 ]| 002 S s
— Letter :
ild'los (03 |02 i 10.95 | 0.05
il 1o2 |08
F{] }l
g o1 |09
g?2lo4 |06
231099 | 0.01
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Conditional independence

P(X,,..., X))
=P(X, | X\ 110y X)) P (X, 13000y X;)
=P (X, | X\ qreeey X)) P (X | Xppheees Xp)
.P(x, | X )P(X,)

= ﬁ P(X, | X, 1545 X{)

[ The belief network represents conditional independence:

P(X, | X;,..., X;) =P(X, | Parents(X.))
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Incremental Network Construction

1. Choose the set of relevant variables X; that describe the domain

2. Choose an ordering for the variables (very important step)

3.  While there are variables left:

a) Pick avariable X and add a node for it

b) Set Parents(X) to some minimal set of existing nodes such that the conditional
Independence property is satisfied

c) Define the conditional probability table for X
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The four patterns

Diagnostic

Causal

O
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InterCausal

Mixed




Conditional Independence Relations

A path is blocked given a set of nodes E if there is a
node Z on the path for which one of three
conditions holds: @

1. ZisinEand Z has one arrow on the path
leading in and one arrow out (Case a and b) @)

2. Zisin E and Z has both path arrows leading out

(Case ¢) @

3. Neither Z nor any descendant of Zis in E, and
: (a) (b) (c) (d)
both path arrows lead in to Z (Case d)

 If every undirected path from a node in X to a node in Y is d-separated by a given set of evidence
nodes E, then X and Y are conditionally independent given E.

» A set of nodes E d-separates two sets of nodes X and Y if every undirected path from a node in X to
a node in Y is blocked given E.
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Conditional Independence in Belief Networks

Battery
Caniany — (Cpaeo

« Whether there is petrol and whether the radio plays are independent given evidence about whether
the ignition takes place

» Petrol and Radio are independent if it is known whether the battery works
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Conditional Independence Iin Belief Networks

Battery
COHOREC

« Petrol and Radio are independent given no evidence at all.
« But they are dependent given evidence about whether the car starts.

 If the car does not start, then the radio playing is increased evidence that we are out of petrol.
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Inference in multiply connected Belief Networks

P(C)=0.5

C P(S) C P(R)
T | 0.10 0.80

—

T T 0.99
T F 0.90
F T 0.90
F F 0.00
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Clustering methods

Transform the net into a probabilistically equivalent (but topologically different) poly-tree by

merging offending nodes
I J P(C)=0.5

P(S+R = x)

TT TF FT FF
0.08 0.02 0.72 0.18
F 0.40 0.10 0.40 0.10

—

Sprinkler
+ Rain

S+R P(W)
T T 0.99
T F 0.90
F T 0.90
F F 0.00 o
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Cutset conditioning Methods

« Aset of variables that can be instantiated to yield a poly-tree is called a cutset
 Instantiate the cutset variables to definite values
* Then evaluate a poly-tree for each possible instantiation
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Inference in multiply connected belief networks

e Stochastic simulation methods

» Use the network to generate a large number of concrete models of the domain that are
consistent with the network distribution.

» They give an approximation of the exact evaluation.

o Statistical bias can lead to misleading results — Simpson’s paradox

Recovered
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Simpson’s Paradox

\WEUES Recovered Not recovered Rec. Rate
Given drug 18 12 60%
Not given drug 7 3 70%
Females Recovered Not recovered Rec. Rate
Given drug 2 8 20%
Not given drug 9 21 30%
Combined Recovered Not recovered Rec. Rate
Given drug 20 20 50%
Not given drug 16 24 40%

« Should the drug be administered, or not?
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Simpson’s Paradox

Males Recovered Not recovered Rec. Rate
Given drug 18 12 60%
Not given drug 7 3 70%
EINEIES Recovered Not recovered Rec. Rate
Given drug 2 8 20%
Not given drug 9 21 30%
Combined Recovered Not recovered Rec. Rate
Given drug 20 20 50%
Not given drug 16 24 40%

P( recovery | male A given_drug ) = 0.6

P( recovery | female A given _drug ) =0.2

P( recovery | given_drug) = P( recovery | male A given_drug )P( given_drug | male)

= (0.6 x 30/4

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

+ P(recovery | female A given_drug )P( given_drug | female )
0) + (0.2 x 10/40) = 0.5



Default reasoning

e Some conclusions are made by default unless a counter-evidence is obtained
= Non-monotonic reasoning

* Points to ponder

= \What is the semantic status of default rules?

= What happens when the evidence matches the premises of two default rules with
conflicting conclusions?

= |f a belief is retracted later, how can a system keep track of which conclusions need to be
retracted as a consequence?
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Issues In Rule-based methods for Uncertain Reasoning

e Locality

= |n logical reasoning systems, if we have A = B, then we can conclude B given evidence
A, without worrying about any other rules. In probabilistic systems, we need to consider all
available evidence.

e Detachment

= Once a logical proof is found for proposition B, we can use it regardless of how it was
derived (it can be detached from its justification). In probabilistic reasoning, the source of
the evidence is important for subsequent reasoning.
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Issues In Rule-based methods for Uncertain Reasoning

 Truth functionality

* In logic, the truth of complex sentences can be computed from the truth of the
components. Probability combination does not work this way, except under strong
Independence assumptions.

A famous example of a truth functional system for uncertain reasoning is the certainty factors model,
developed for the Mycin medical diagnostic program
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Dempster-Shafer Theory

» Designed to deal with the distinction between uncertainty and ignorance
* We use a belief function Bel(X) — probability that the evidence supports the proposition

* When we do not have any evidence about X, we assign Bel(X) = 0 as well as Bel(—X) =0

» Forexample, if we do not know whether a coin is fair, then:
Bel( Heads ) = Bel( —Heads ) =0

« If we are given that the coin is fair with 90% certainty, then:

Bel(Heads )=0.9 X0.5=0.45
Bel(—Heads ) =0.9 X 0.5=0.45

 Note that we still have a gap of 0.1 that is not accounted for by the evidence
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Fuzzy Logic

» Fuzzy set theory is a means of specifying how well an object satisfies a vague description

= Truth is a value between 0 and 1

= Uncertainty stems from lack of evidence, but given the dimensions of a man concluding whether he

IS fat has no uncertainty involved

* The rules for evaluating the fuzzy truth, T, of a complex sentence are:

T(AAB)=min(T(A), T(B))
T(Av B)=max(T(A), T(B))
T(—A)=1-T(A)

A B
v B
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Example: Cardiac Health Management

Fuzzy Rules

1. Dietis low AND Exercise is high = Balanced
2. Dietis high OR Exercise is low = Unbalanced
3. Balanced = Risk is low
4

Unbalanced = Risk is high

For a person it is given that:
e Diet =3000 calories per day
« Exercise = burning 1000 calories per day

What iIs the risk of heart disease?
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Membership Functions

Dhet High Diet Low
membership membership
LOoF - 1.0F.
0.8 : ___..-""J..- 08 : -w-u-..ﬁhl-
:|5 : ..-.-..-___-". :IE : '\--\..,\_Hh%
D.4f e 0.4t T
0.2 ___.-""-. } 0.7 .\IH'\-\. .
A P A A S calories consumead S S S s calories consumed
1000 2000 3000 4000 SO0 1000 2000 3000 4000 5000
1
f diet high(X) = 5000~ faiet1ow(x) =1 — 5000~

For daily calorie intake of 3000:
Membership for Diet-High = 3000 / 5000 = 0.6
Membership for Diet-Low = 0.4

46
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Membership Functions

Exercize High Exercize Low
membership membership
1.0} - 1O
o.8f P 08l e
0.6 ,s’#f 0.6f .
0.4f - 0.4 ™~
.2 P -~ D.2 ~.
N S R caloies bumed | @200 064—— 01001 T caloriss bumed
Oe 100e 1504 2000 () 10060 150 200
1
fexercise high(x) = 2000 X fexercise low(x) =1 - 2000 X

For daily calorie burned of 1000:
Membership for Exercise-High = 1000 / 2000 = 0.5

Membership for Exercise-Low = 0.5
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Rule Evaluation

Truth( Diet-High ) = 0.6 Truth( Diet-Low ) = 0.4
Truth( Exercise-High ) = 0.5 Truth( Exercise-Low ) = 0.5

Diet is low AND Exercise is high = Balanced

 Truth(Balanced ) = min { Truth( Diet-Low ), Truth( Exercise-High ) }=min{0.4,05}=0.4

Diet is high OR Exercise is low = Unbalanced

e Truth( Unbalanced ) = max { Truth( Diet-High ), Truth( Exercise-Low ) } =max {0.6,0.5}=0.6

Balanced = Risk is low

o Truth( Risk-Low ) = Truth( Balanced ) = 0.4

Unbalanced = Risk is high
e Truth( Risk-High) = Truth( Unbalanced ) = 0.6
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Risk-High Evaluation

Risk High e Truth( Risk-High)=0.6
ey e Therefore:
osf P 0.6=x/125
osf prd or, X=175
0.2 7
[ Rizk High
Pl - - - “ likelvhood of hesrt disassa
0 20 40 60 20 100
0.8}
0.6 -
04} _
bar L
-fllllllmil}tﬁﬂﬂ-ﬂftﬂﬂlﬁﬁ
0 0 40 60 B0 100
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Risk-Low Evaluation

e Truth(Risk-Low)=0.4
Rizk Low
membership e Therefore:
1.0
; 0.4=0.8-x/125
0.8k
F 1 _
0.6f ““*H friskiow(x) = 0.8 — 125 % or, Xx=50
o H
it hﬂ"‘" Rizk Low
; : . A likalyhood of hesrt disssss | P
o 20 40 50 B0 100
W :
0.6 F
D.4 —
F aﬁ
ey h-. likelvhood of hesrt dizazszs
0 20 40 50 80 100
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Aggregated Risk Function
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Defuzzification
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Therefore the likelihood of a heart disease for the person is 47.5%
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What next ?

« Probabilistic reasoning is an integral part of many domains of Al. We intend to study the following in future —

« Probabilities reasoning in state machines (Markov Chains)
* Good for modeling dynamical systems, recurrent behavior
» Reinforcement Learning methods work with Markov Decision processes

e You may also look up some of these for further reading -

« Bayesian optimization is an advanced method for automated problem solving under limited knowledge of
the state space

« Bayesian learning methods are gaining in popularity for making classifiers more important

« Uncertainty needs to be factored into classifiers, so that the classifier can separate out lack of
knowledge as one of the outcomes

o [Forexample, if a ML classifier is trained to separate wolves from huskies, it should be able to say
“I don’t know” If presented with the picture of a cat

« Structures like Stochastic AND/OR Graphs are being conceived for explainable Al (XAl)
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