Reasoning under Uncertainty

The intelligent way to handle the unknown

COURSE: CS60045

Pallab Dasgupta Professor, Dept. of Computer Sc & Engg

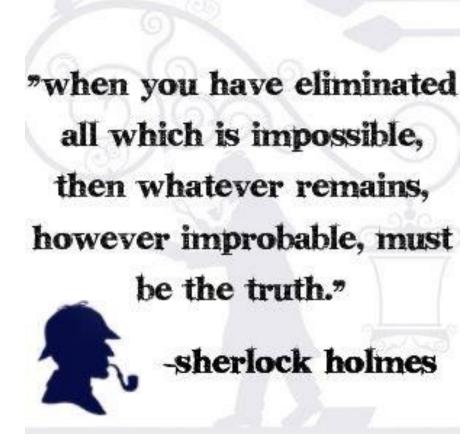
Logical Deduction versus Induction

DEDUCTION

- Commonly associated with formal logic
- Involves reasoning from known premises to a conclusion
- The conclusions reached are inevitable, certain, inescapable

INDUCTION

- Commonly known as informal logic or everyday argument
- Involves drawing uncertain inferences based on probabilistic reasoning
- The conclusions reached are probable, reasonable, plausible, believable



Handling uncertain knowledge

Classical first order logic has no room for uncertainty

```
\forall p \ Symptom(p, Toothache) \Rightarrow Disease(p, Cavity)
```

- Not correct toothache can be caused in many other cases
- In first order logic we have to include all possible causes

```
∀p Symptom(p, Toothache) ⇒ Disease(p, Cavity) ∨ Disease(p, GumDisease)
∨ Disease(p, ImpactedWisdom) ∨ ...
```

Similarly, Cavity does not always cause Toothache, so the following is also not true

```
\forall p \ Disease(p, Cavity) \Rightarrow Symptom(p, Toothache)
```

Reasons for using probability

- Specification becomes too large
 - It is too much work to list the complete set of antecedents or consequents needed to ensure an exception-less rule
- Theoretical ignorance
 - The complete set of antecedents is not known
- Practical ignorance
 - The truth of the antecedents is not known, but we still wish to reason

Predicting versus Diagnosing

- Probabilistic reasoning can be used for predicting outcomes (from cause to effect)
 - Given that I have a cavity, what is the chance that I will have toothache?
- Probabilistic reasoning can also be used for diagnosis (from effect to cause)
 - Given that I am having toothache, what is the chance that it is being caused by a cavity?

We need a methodology for reasoning that can work both ways.

Axioms of Probability

- 1. All probabilities are between 0 and 1: $0 \le P(A) \le 1$
- 2 P(True) = 1 and P(False) = 0
- 3. $P(A \lor B) = P(A) + P(B) P(A \land B)$

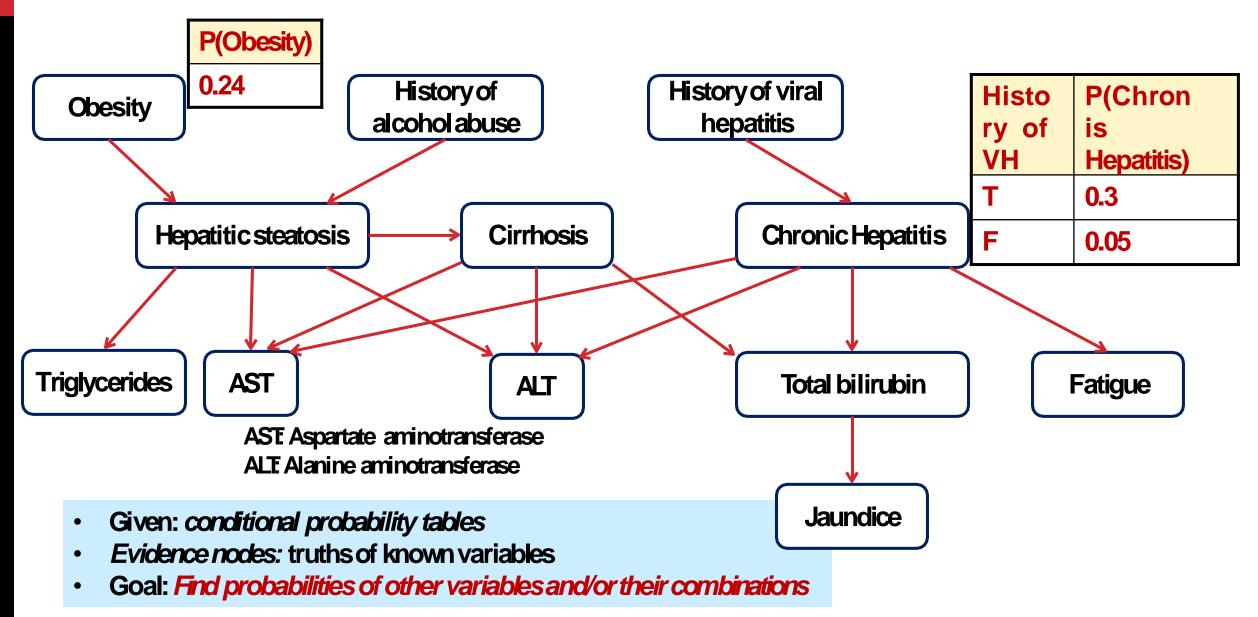
Bayes' Rule

$$P(A \land B) = P(A \mid B) P(B)$$

$$P(A \land B) = P(B \mid A) P(A)$$

$$P(B \mid A) = \frac{P(A \mid B) P(B)}{P(A)}$$

Bayesian Belief Network



Belief Networks

A belief network is a graph with the following:

- Nodes: Set of random variables
- Directed links: The intuitive meaning of a link from node X to node Y is that X has a direct influence on Y

Each node has a conditional probability table that quantifies the effects that the parent have on the node.

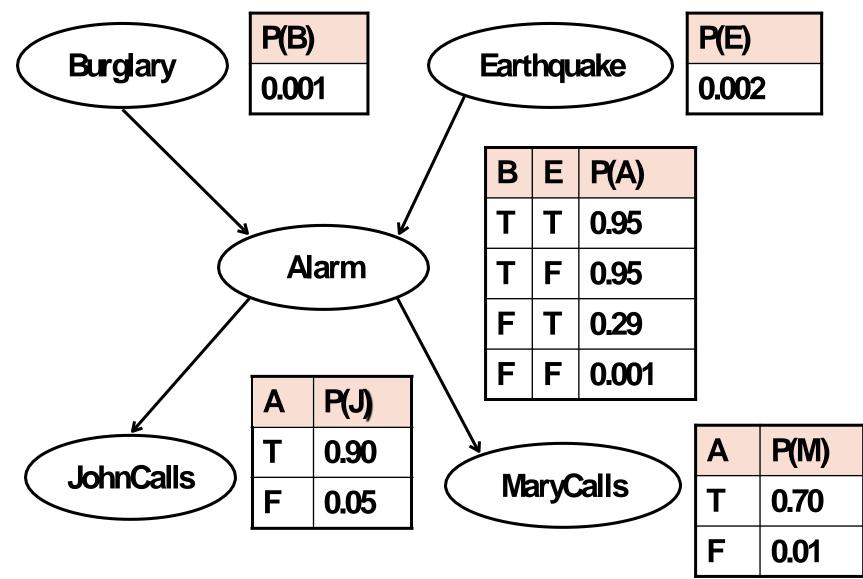
The graph has no directed cycles. It is a directed acyclic graph (DAG).

Classical Example

- Burglar alarm at home
 - Fairly reliable at detecting a burglary
 - Responds at times to minor earthquakes

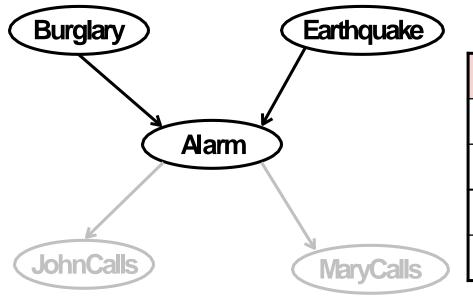
- Two neighbors, on hearing alarm, calls police
 - John always calls when he hears the alarm, but sometimes confuses the telephone ringing with the alarm and calls then, too.
 - Mary likes loud music and sometimes misses the alarm altogether

Belief Network Example



• A generic entry in the joint probability distribution $P(x_1, ..., x_n)$ is given by:

$$P(x_1,...,x_n) = \prod_{i=1}^{n} P(x_i | Parents(X_i))$$



В	Ш	P(A)
Т	Т	0.95
Т	H	0.95
F	T	0.29
F	F	0.001

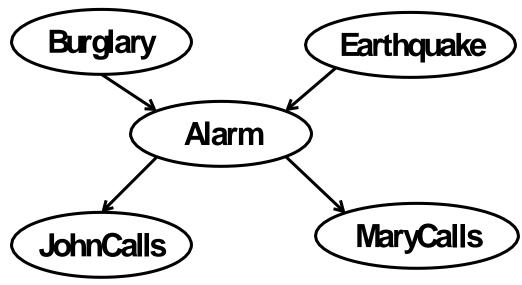
 Probability of the event that the alarm has sounded but neither a burglary nor an earthquake has occurred, and both Mary and John call:

$$P(J \land M \land A \land \neg B \land \neg E)$$

= $P(J | A) P(M | A) P(A | \neg B \land \neg E) P(\neg B) P(\neg E)$
= $0.9 \times 0.7 \times 0.001 \times 0.999 \times 0.998$
= 0.00062

В	E	P(A)
_	7	0.95
T	F	0.95
F	T	0.29
F	F	0.001

Α	P(J)	Α	P(M)		
Т	0.90	Т	0.70	P(E)	P(B)
F	0.05	F	0.01	0.002	0.001



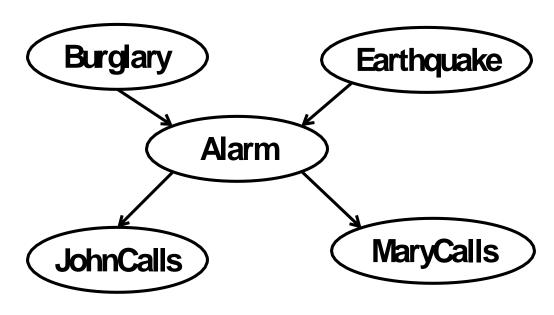
 Computation of the probabilities of several different event combinations of the Burglary-Alarm belief network example:

$$P(B) = 0.001$$

 $P(B') = 1 - P(B) = 0.999$
 $P(E) = 0.002$
 $P(E') = 1 - P(E) = 0.998$

В	E	P(A)
T	_	0.95
Т	Ŧ	0.95
F	T	0.29
F	F	0.001

Α	P(J)	Α	P(M)		
Т	0.90	Т	0.70	P(E)	P(B)
F	0.05	F	0.01	0.002	0.001



 Computation of the probabilities of several different event combinations of the Burglary-Alarm belief network example:

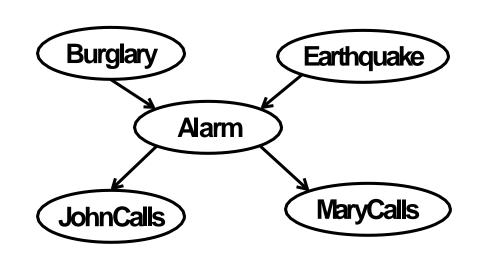
$$P(A) = P(AB'E') + P(AB'E) + P(ABE') + P(ABE')$$

$$= P(A | B'E').P(B'E') + P(A | B'E).P(B'E) + P(A | BE').P(BE') + P(A | BE).P(BE)$$

$$= 0.001 \times 0.999 \times 0.998 + 0.29 \times 0.999 \times 0.002 + 0.95 \times 0.001 \times 0.998 + 0.95 \times 0.001 \times 0.002$$

$$= 0.001 + 0.0006 + 0.0009 = 0.0025$$

В	Ε	P(A)						
T	_	0.95						
Т	Ŧ	0.95	Α	P(J)	Α	P(M)		
F	T	0.29	Т	0.90	Т	0.70	P(E)	P(B)
F	F	0.001	F	0.05	F	0.01	0.002	0.001



The joint probability distribution: Find P(J)

$$P(J) = P(JA) + P(JA')$$

$$= P(J | A).P(A) + P(J | A').P(A')$$

$$= 0.9 \times 0.0025 + 0.05 \times (1 - 0.0025)$$

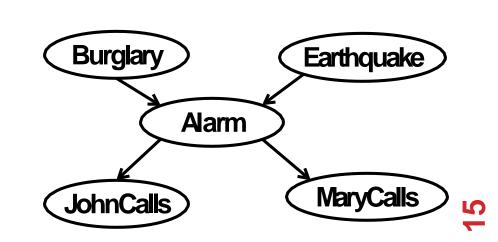
$$= 0.052125$$

$$P(AB) = P(ABE) + P(ABE') = 0.95 \times 0.001 \times 0.002 + 0.95 \times 0.001 \times 0.998$$

$$= 0.00095$$

В	Е	P(A)
T	T	0.95
7	Ŧ	0.95
F	7	0.29
F	F	0.001

Α	P(J)	Α	P(M)		
Т	0.90	T	0.70	P(E)	P(B)
F	0.05	F	0.01	0.002	0.001



The joint probability distribution: FindP(A'B) and P(AE)

$$P(A'BE) = P(A'BE) + P(A'BE')$$

$$= P(A' | BE) \cdot P(BE) + P(A' | BE') \cdot P(BE')$$

$$= (1 - 0.95) \times 0.001 \times 0.002$$

$$+ (1 - 0.95) \times 0.001 \times 0.998$$

$$= 0.00005$$

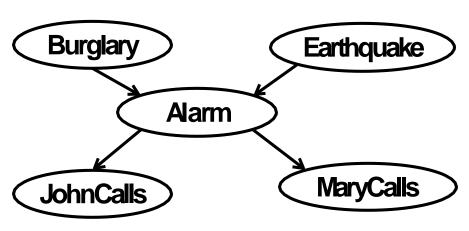
$$P(AE) = P(AEB) + P(AEB')$$

 $= 0.95 \times 0.001 \times 0.002 + 0.29 \times 0.999 \times 0.002 = 0.00058$

В	Е	P(A)
T	H	0.95
Т	Ŧ	0.95
F	_	0.29
F	F	0.001

Α	P(J)
T	0.90
F	0.05

Α	P(M)		
T	0.70	P(E)	P(B)
F	0.01	0.002	0.001



$$P(AE') = P(AE'B) + P(AE'B')$$

= 0.95 x 0.001 x 0.998 + 0.001 x 0.999 x 0.998
= 0.001945

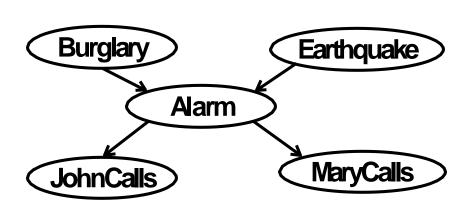
$$P(A'E') = P(A'E'B) + P(A'E'B')$$

= $P(A' | BE').P(BE') + P(A' | B'E').P(B'E')$
= $(1 - 0.95) \times 0.001 \times 0.998 + (1 - 0.001) \times 0.999 \times 0.998 = 0.996$

В	Е	P(A)
T	T	0.95
T	Ŧ	0.95
F	T	0.29
F	F	0.001

Α	P(J)	Α	P(M)	
T	0.90	Т	0.70	P(E)
F	0.05	F	0.01	0.002

Α	P(M)		
T	0.70	P(E)	P(B)
F	0.01	0.002	0.001



The joint probability distribution: FindP(JB)

$$P(JB) = P(JBA) + P(JBA')$$

$$= P(J | AB).P(AB) + P(J | A'B).P(A'B)$$

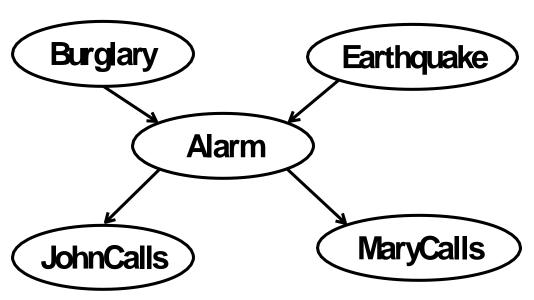
$$= P(J | A).P(AB) + P(J | A').P(A'B)$$

$$= 0.9 \times 0.00095 + 0.05 \times 0.00005$$

$$= 0.00086$$

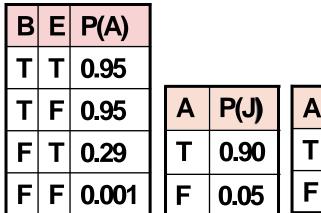
В	E	P(A)
T	_	0.95
Т	F	0.95
F	T	0.29
F	F	0.001

Α	P(J)	Α	P(M)		
Т	0.90	Т	0.70	P(E)	P(B)
F	0.05	F	0.01	0.002	0.001

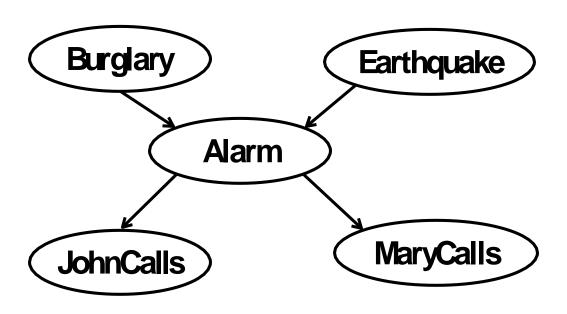


 Computation of the probabilities of several different event combinations of the Burglary-Alarm belief network example:

$$P(J | B) = P(JB) / P(B) = 0.00086 / 0.001 = 0.86$$



4	P(J)	Α	P(M)		
Γ	0.90	Т	0.70	P(E)	P(B)
=	0.05	F	0.01	0.002	0.001

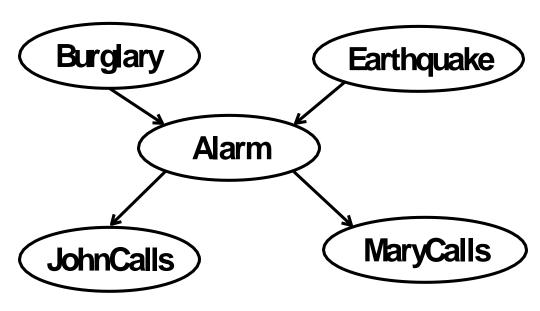


$$P(MB) = P(MBA) + P(MBA')$$

= $P(M \mid AB).P(AB) + P(M \mid A'B).P(A'B)$
= $P(M \mid A).P(AB) + P(M \mid A').P(A'B)$
= $0.7 \times 0.00095 + 0.01 \times 0.00005$
= 0.00067

В	Е	P(A)
T	H	0.95
_	Ŧ	0.95
F	T	0.29
F	F	0.001

Α	P(J)	Α	P(M)		
Т	0.90	Т	0.70	P(E)	P(B)
F	0.05	F	0.01	0.002	0.001

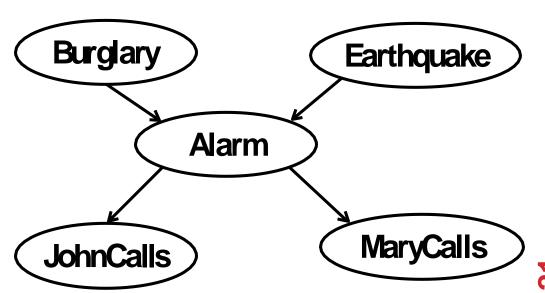


P(B)

0.001

В	Ε	P(A)
Т	T	0.95
T	H	0.95
F	T	0.29
F	F	0.001

Α	P(J)	Α	P(M)	
T	0.90	Т	0.70	P(E)
F	0.05	F	0.01	0.002



 Computation of the probabilities of several different event combinations of the Burglary-Alarm belief network example:

$$P(AJE') = P(J | AE').P(AE') = P(J | A).P(AE')$$

$$= 0.9 \times 0.001945 = 0.00175$$

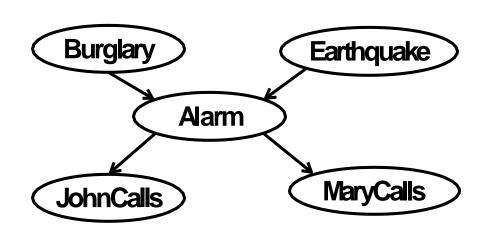
$$P(A'JE') = P(J | A'E').P(A'E') = P(J | A').P(A'E')$$

$$= 0.05 \times 0.996 = 0.0498$$

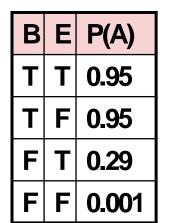
$$P(JE') = P(AJE') + P(A'JE') = 0.00175 + 0.0498 = 0.05155$$

В	Е	P(A)
T	T	0.95
7	Ŧ	0.95
F	_	0.29
F	F	0.001

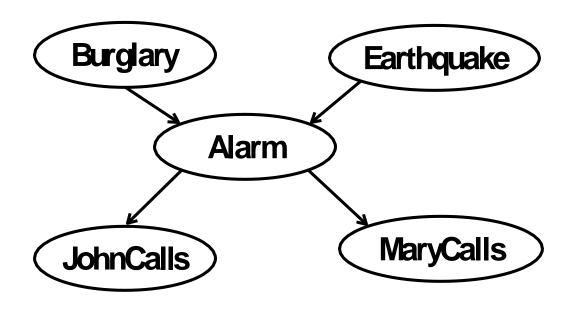
Α	P(J)	Α	P(M)		
Т	0.90	Т	0.70	P(E)	P(B)
F	0.05	F	0.01	0.002	0.001



$$P(A | JE') = P(AJE') / P(JE') = 0.00175 / 0.05155 = 0.03$$



				1	
Α	P(J)	Α	P(M)		
Т	0.90	Т	0.70	P(E)	P(B)
F	0.05	F	0.01	0.002	0.001



$$P(BJEA) + P(BJEA)$$

$$= P(J \mid ABE').P(ABE') + P(J \mid A'BE').P(A'BE')$$

$$= P(J \mid A).P(ABE') + P(J \mid A').P(A'BE')$$

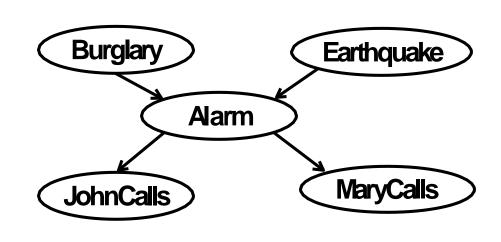
$$= 0.9 \times 0.95 \times 0.001 \times 0.998 + 0.05 \times (1 - 0.95) \times 0.001 \times 0.998$$

= 0.000856

P(B | JE') = P(BJE') / P(JE') = 0.000856 / 0.05155 = 0.017

В	Ε	P(A)		
T	T	0.95		
T	Ŧ	0.95		
F	T	0.29		
F	F	0.001		

Α	P(J)	Α	P(M)		
T	0.90	Т	0.70	P(E)	P(B)
F	0.05	F	0.01	0.002	0.001



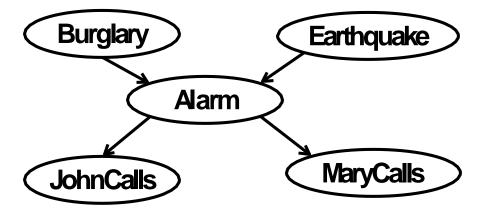
Inferences using belief networks

- Diagnostic inferences (from effects to causes)
 - Given that JohnCalls, infer that
 P(Burglary | JohnCalls) = 0.016

- Causal inferences (from causes to effects)
 - Given Burglary, infer that

P(JohnCalls | Burglary) = 0.86

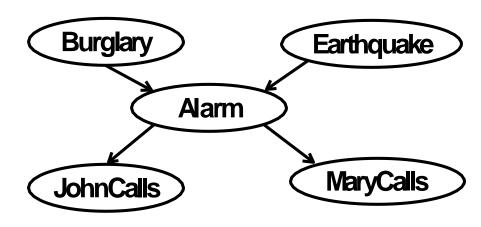
P(MaryCalls | Burglary) = 0.67



Inferences using belief networks

- Inter-causal inferences (between causes of a common effect)
 - Given Alarm, we have P(Burglary | Alarm) = 0.376
 - If we add evidence that Earthquake is true, then $P(Burglary | Alarm \land Earthquake) = 0.003$

- Mixed inferences
- Setting the effect JohnCalls to true and the cause Earthquake to false gives $P(Alarm \mid JohnCalls \land \neg Earthquake) = 0.003$



Exercise

Three candidates run for an election as a major in a city.

According to a public opinion poll, their chances to win are 0.25, 0.35 und 0.40.

The chances that they build a bridge after they have been elected are 0.60, 0.90 and 0.80.

What is the probability that the bridge will be built after the election?

Solution: Let $C, c \in \{1, 2, 3\}$, be the random variable indicating the winning candidate and $B, b \in \{t, f\}$, the random variable indicating whether the bridge will be built. Then the total probability that the bridge will be built is

$$P(B=t) = \sum_{c=1}^{3} P(B=t|c)P(c) = 0.60 \times 0.25 + 0.90 \times 0.35 + 0.80 \times 0.40 = 0.785.$$

Exercise

On an airport all passengers are checked carefully.

Let T with $t \in \{0, 1\}$ be the random variable indicating whether somebody is a terrorist (t = 1) or not (t = 0).

Let A with $a \in \{0, 1\}$ be the variable indicating arrest.

A terrorist shall be arrested with probability P(A = 1|T = 1) = 0.98, a non-terrorist with probability P(A = 1|T = 0) = 0.001.

One in a lakh passengers is a terrorist, P(T = 1) = 0.00001.

What is the probability that an arrested person actually is a terrorist?