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Brain inspired computing
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Preliminaries

« Deciding the capacity of the model DATA (INPUT)
* Under-fitting, If the capacity Is > Learning
weak Output

« Over-fitting, if the capacity Is
unnecessarily large

_ _ — - Training error
« Neural network offers a generic Underfitting zone| Overfitting zone ——  Ceneralization error

model, which offers:

 Structural variants, so as to g
scale up / down the capacity =

« Various types of activation L
functions, which enables the N I Generalization gap
modeling of various types of - _______y
functions. CIJ Optimal Capacity

Capacity
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Neural Networks

A neural network consists of a set of nodes
(neurons/units) connected by links

 Each link has a numeric weight

Each unit has:

o aset of input links from other units,
o aset of output links to other units,
e acurrent activation level, and

e an activation function to compute the
activation level in the next time step.
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Perceptron

a = g(in)
T~ T
g
X1 v in J a
X2 {7 Input ———— Output
Function Actlvqtlon
Function
Studying a perceptron helps us to
2 understand the limitations in capacity and
in = Z W.x. a = 0 ifin<o0 the corresponding inability to model certain

= o 1 ifin>0 types of functions.
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Perceptron
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Linear Function:

in= x1W1 + xZWZ — WO
0 ifin<o

{0

1 ifin>0

AND: W, =1,W,=1, W,=1

In=x,+X,—1

OR: W, =2, W,=2,W,=1

In=2x, +2x,—-1

What about XOR?




Multiple Layers Increase the Capacity

XOR
The black and white dots are not linearly separable, that
. PN IS, no linear function of the following form separates them:
in= x1W1 + x2W2 — WO
%] 1

XOR Gate
OR gate

AND gats With two layers, it is possible to

» output

model the XOR function.

NOT AND gate
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Supervised Learning by back-propagating errors

The basic idea;
Golden

« We compute the output error as:
output

Error = golden output (y) — output of network (a)

« The training error function computed over all training data is: Training
Input

Neural Network

1
E=_%i—a)*

 We wish to find values of Wj such that E is minimum over the
training data

» For this purpose we may iteratively do the following:
« Present a training sample to the network
« Compute the error for this output

 Factorize the error in proportion to the contribution of the
nodes and readjust the weights accordingly

Adjust weights
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Learning in Single Layered Networks

Idea: Optimize the weights so as to minimize error function:

E = %Err2 (y g(XloW; x]))

We can use gradient descent to reduce the squared error by
calculating the partial derivative of E with respect to each weight.

OE
ow; Weight update rule:
JErr
= Err X oW, W< W;+aXxErrxg'(in) X x;
where o Is the learning rate

= Err X —— W;x;
aw y—4 Z
We purposefully eliminate a fraction of the

— _Err x a'(in) x x. error through the We?ght adjustment rule,
g (in) X x; but not the whole of it. Why?
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Multi-Layer Feed-Forward Network

Weight updation rule at the output layer:

‘ O, Outputunits
W.

i< Wj+axErrXxg'(in) X x;
(same as single layer)

Hidden units

. Inputunits

In multilayer networks, the hidden layers also contribute to the error at the output.

e S0 the important question is: How do we revise the hidden layers?

10
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Back-Propagation Learning

e To update the connections between the input units
and the hidden units, we need to define a quantity
analogous to the error term for output nodes

* We do an error back-propagation, defining error as
A; = Err; X g'(in;)

e Theideais that a hidden node j is responsible for
some fraction of the error in each of the output
nodes to which it connects

« Thus the A, values are divided according to the
strength of the connection between the hidden
node and the output node and are propagated
back to provide the A; values for the hidden layer.
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The propagation rule for the A values is
the following:

Aj = g'(in)) X; W;A;

The update rule for the hidden layers is:

Wk,j — Wk,]-+a>< ay XA]
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The mathematics behind the updation rule

The squared error on a single example is defined as:

1
E=_%i—a;)’

where the sum is over the nodes in the output layer. To obtain the gradient with respect to a specific weight W,
In the output layer, we need only expand out the activation a; as all other terms in the summation are unaffected

by W,

OE dg(in;) ain;

= —( —a) =—(y; — a;) = —(y; —ayg'(in;)
aW]l yl l aW yl l aW’ yl lg l

N - W-.:.a:
e

= —(y; — ap)) g (iny)a; = —a;h;

OW]-,,-

=—-yi—a)g

Wj,i «— Wj,i + a X Clj X Ai
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The mathematics contd.
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Problems with this Learning

« The weight updation rules define a single step of
gradient descent

» Gradient descent may reach a local minima

e The minimum training error reached at the end
of training Is not the best

e The final network is not explainable. We do not know
what the network has learned.

* For asingle layer network, the error can be
explained in terms of the inputs and the weights

 In a multi-layer network, the hidden layers do
not make any sense to the end user
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Convolutional and Recurrent

Neural Networks

« Convolution is useful for learning artifacts that
have a small locality of reference

» Recurrence is useful for learning sequences
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T f N | N t k Activation Functions |
ypes O eurd etWOrKS . ——
Xy Identity Alx) = x i
Single neuron: perceptron, — e
y = &5 (b 2 EW{’;X!-) g P P Sigmoid Alx) = — ‘
X, - linear / logistic regression JE— ‘
Tanh Alx) =
et +eg™*
X3 Recurrent network S sy Fx<o
=T 1 ifx=z0

Feed-forward network
(no cycles) -- non-linear

classification & regression
——
Ny — output layer
input layer \ Y / (class/target)

Symmetric (RBM)
P (hidden | input)  unsupervised, trained
to maximize likelihood
=0 | b, +2w...x!. of input data

. ’[‘ a mixture model

[)’i - ;:w;jhj =
i
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The Convolution Operation

Suppose we are tracking the location of a spaceship with a laser sensor.

* Qur laser sensor produces a single output x(t), the position of the spaceship at time ¢

e Suppose that our laser sensor is somewhat noisy, and therefore we wish to take the average of
multiple measurements.

* More recent measurements have more weight, so we need a weighting function w(a), which
returns the weight of measurement taken at the past time, a.

s(t) = jx(a)w(t —a)da = (x *w)(t)

This operation is called convolution. The first argument, x( ), is called the input, and the
second argument, w( ), is called the kernel.
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Discrete Convolution

If we assume that x and w are defined only on integer t, we can define discrete convolution:

(00}

s@ =@ w® = ) x@w(t-a)

a=—~oo

Convolution can also be defined over more than one axis at a time. For example, if we use a two dimensional
Image I as our input, we may want to use a two dimensional kernel:

s(L,j))=UxK)(i,j) = zzl(m,n)K(i —m,j —n)

Convolution is commutative, that is, we can also write (by replacing m by i — m and n by j — n):

s@) = K+DE) =) ¥ I1i-mj-mKam,n)
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Convolution Networks help us to learn image filters

Operation Filter Convolved

Image
0 0 @ 0 1 0
Identity 0 1 0 Sharpen -1 o =1
0 0 0O 0 -1 U
1 O =1 - i 1 1 1
0 0 0 ) =% ¥ o
{nomalized) 4
=1 0 1 1 1 1
() 1 0 1 2 1
Gaussian blur 1
Edge detection 1 —4 1 - 1 3 4 3
(aporoximaticn) 16
0 1 0 1 2 1

Machine learning can be used to learn these filters.
e The weights of a convolutional network are learned
e How does the network look like?
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Convolution and Pooling

Large response

in pooling unit
Large

response
in detector
unit 1

b || &
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Large response

in pooling unit

A pooling function replaces the output
of the net at a certain location with a
summary statistic of the nearby
outputs

Large
response
in detector

unit 3

Set of three learned filters

The output of pooling unit is the same
In both cases. Hence both the 5s are
recognized.

21




Sequence Modeling: Recurrent and Recursive Networks

» Recurrent Neural Networks (RNNs) are a family of neural networks for processing sequential data

« Recurrent networks can scale to much longer sequences than would be practical for networks without
sequence-based specialization

* Most recurrent networks can also process sequences of variable length
e The key idea behind RNNs is parameter sharing

* For example, in a dynamical system, the parameters of the transfer function do not change with time
« Therefore we can use the same part of the neural network over and over again
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Unfolding Computation

Consider a dynamical system:
S(t) — f(s(t_l); 0)

where s is the state at time t and @is the set of parameters of f

« The state after a finite number of steps can be obtained by applying the definition recursively. For example,
after 3 steps:

s = f(s(z); 9) — f(f(s(l); 3); 9)

« For a dynamical system driven by an external input signal x(® :
S(t) — f(s(t_l),x(t); 0)
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Unfolding computation and Recurrent Network

/ unfold / d 4

h® = f(h(t—l), x(t); 3)

» Regardless of the sequence length, the learned model always has the same input size, because it is specified
In terms of transition from one state to another state, rather than specified in terms of a variable-length history
of states

» Itis possible to use the same transition function fwith the same parameters at each step
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Useful topologies of RNNs

« RNNSs that produce an output at each time step and have recurrent connections between hidden units

« RNNSs that produce an output at each time step and have recurrent connections only from the output at one
time step to the hidden units at the next time step

* RNNSs with recurrent connections between hidden units, that read an entire sequence and then produce a
single output
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RNN with hidden-hidden feedback

) = b+ WstD L Uadt)
) tmlh(a(ﬂ)

) = e¢4+Vsl)
)

— :auftnm.}::(o(t) )

RNN with hidden-hidden feedback is
universal. Any function computable by
a Turing machine can be computed by
such a RNN of finite size (weights can
have infinite precision).

Figure from Deep Learning,
Goodfellow, Bengio and Courville




RNN with output-hidden feedback

Less powerful than the hidden-hidden

feedback model.
Advantage: Each time step can be trained

In isolation (why?)

Figure from Deep Learning,
Goodfellow, Bengio and Courville




RNN with output only at the end

Can be used to summarize a sequence
and produce a fixed-size representation to

be used as an input for further processing

Figure from Deep Learning,
Goodfellow, Bengio and Courville




Boltzmann Machines

A Boltzmann machine is a network of units with an energy defined for the overall network. Its units
produce binary results. The global energy, E, is:

E = _(Zi<jwi]’5i$]‘ + Zi Bisi)
where:

* w;; is the connection strength between unit j and unit i.

e s;isthe state, s;e { 0,1}, of uniti

e 0; is the bias of unit i in the global energy function. (—8; is the activation threshold for the unit)
AE —ZWUI z ls'+0i
Jj>i Jj<i

* From this we obtain (the scalar T is called the temperature):
1

1+ exp (— Afi)

Pi=on =
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The ML problem in regression

What is the function f(.) ?

Solution: This 1s where the different ML methods come In
e Linear model: f(x) = wlx
» Linear basis functions: f(x) = wl¢(x)

« Where ¢p(x) = [¢o(x) Pp1(x) ... (x)]T and ¢;(x) is the basis function.
 Choices for the basis function:

 Powers of x: ¢p;(x) = x!
e Gaussian / Sigmoidal / Fourier / ...

 Neural networks
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Classification

Given training data set with:
e Inputvalues: x, = [x4 X5 ... xy]T forn=1..N.
e Qutput class labels, for example:

* 0/1 or —1/+1 for binary classification problems
e 1 ... Kfor multi-class classification problems
« 1-of-K coding scheme:

y=[0..010 ..0]"

where, if x,, belongs to class k, then the k" bit is 1 and all others are 0.

Objective: Predict the output class for new, unknown inputs x,,,.
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Classification strategies

Linear discriminants
(2-class classifiers)

€r9

_2 I |
-2 -1 0 1

| I I
Combining 2-class classifiers to obtain multi-class classifiers is a bad idea !!

o
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