Programming in C. Basics

CS10001: Programming & Data Structures

Pallab Dasgupta
Professor, Dept. of Computer Sc. & Engg.,
Indian Institute of Technology Kharagpur

Dept. of CSE, IIT KGPY

Types of variable

« We must declare the type of every variable we use in C.
Every variable has a type (e.g. int) and a name.

This prevents some bugs caused by spelling errors (misspelling
variable names).

Declarations of types should always be together at the top of main
or a function (see later).

Other types are char , signed , unsigned , long , short and

ldentifiers and Keywords

|dentifiers

Names given to various program elements (variables,
constants, functions, etc.)

May consist of letters, digits and the underscore (‘') character,
with no space between.

First character must be a letter or underscore.

An identifier can be arbitrary long.

« Some C compilers recognize only the first few chara cters of the
name (16 or 31).

Case sensitive
e ‘area’, ‘AREA’ and ‘Area’ are all different.

Valid and Invalid Identifiers

Valid identifiers
X
abc
simple_interest
al23
LIST
stud_name
Empl 1
Empl_2
avg_empl_salary

Invalid identifiers

10abc
my-maime
“hello”

simple interest
(area)

Yorate

Another Example: Adding two numbers

@ #include <stdio.h>

main()

{ / Variable Declaration
/ READ A, B /

Int a, b, C;

- scanf(“%d%d”,&a, &b);

A
c=a+b;

/ PRINT C /
CO I

Dept. of CSE, IIT KGPY

~ printf(“%d”,c);

Example: Largest of three numbers

#include <stdio.h>
[* FIND THE LARGEST OF THREE NUMBERS */

main()

{
int a, b, ¢, max;
"~ scanf (“%d %d %d”, &x, &y, &2);

if (x>y)
max = X;
else max = y;

if (max > 2)
printf(“Largest is %d”, max);
else printf(“Largest is %d”, z);

Dept. of CSE, IIT KGPY

Largest of three numbers: Another way

#include <stdio.h>

/* FIND THE LARGEST OF THREE NUMBERS */

main()
{
int a, b, c;
scanf (“%d %d %d”, &a, &b, &cC);
if ((a>b) && (a>c)) [* Composite condition check */
printf ("\n Largest is %d”, a);
else
if (b>c) [* Simple condition check */
printf ("\n Largest is %d”, b);
else
printf ("\n Largest is %d”, c);

Dept. of CSE, IIT KGPY

Use of functions: Area of a circle

#include <stdio.h> / Macro definition
#define Pl 3.1415926 Function definition
/

[* Function to compute the area of a circle */
float myfunc (float r)

a=Pl*r*r;

Function argument
return (a); /* return result */

}

main()
{ float radius, area; Function declarati_on
float myfunc (float radius); — (return value defines the type)

scanf (“%f", &radius); Function call
area = myfunc (radius); —

printf (“\n Area is %f \n”, area);

Dept. of CSE, IIT KGPY

Structure of a C program

 Every C program consists of one or more functions.
— One of the functions must be called main.
— The program will always begin by executing the main function.

 Each function must contain:

— Afunction heading, which consists of the function = name,
followed by an optional list of arguments enclosed in
parentheses.

— Alist of argument declarations.

— A compound statement, which comprises the remainder of the
function.

Desirable Programming Style

Clarity
— The program should be clearly written.
— It should be easy to follow the program logic.

Meaningful variable names

— Make variable/constant names meaningful to enhance
e ‘area’ instead of ‘a’
e ‘radius’ instead of ‘r’

Program documentation
— Insert comments in the program to make it easy to u
— Never use too many comments.

Program indentation
— Use proper indentation.
— Structure of the program should be immediately visi

. of CSE, IIT KGP

program clarity.

nderstand.

ble.

Indentation Example: Good Style

#include <stdio.h>
/* FIND THE LARGEST OF THREE NUMBERS */

main()

{

int a, b, c;
scanf(*%d%d%d”, &a, &b, &c);

If ((a>b) && (a>c))
printf(*\n Largest is %d”, a);
else
if (b>c)
printf(*\n Largest is %d”, b);

printf(*\n Largest is %d”, c);

Indentation Example: Bad Style

#include <stdio.h>

[* FIND THE LARGEST OF THREE NUMBERS */
main()
{
int a, b, c;
scanf(*%d%d%d”, &a, &b, &c);
if ((a>b) && (a>c))
printf(“\n Largest is %d”, a);
else
if (b>c)
printf(“\n Largest is %d”, b);
else
printf(“\n Largest is %d”, c);

Data Types in C

Int :: integer gquantity
Typically occupies 4 bytes (32 bits) in memory.

char :. single character
Typically occupies 1 bye (8 bits) in memory.

float :: floating-ppoihhoorbee(&anourbee mitliraaddesimaél poipdint)
Typically occupies 4 bytes (32 bits) in memory.

double :: double-prescssoonflibaditnug-pgotmurabdyer

Contd.

 Some of the basic data types can be augmented by us ing certain
data type qualifiers:

— short

— long

— signed
— unsigned

e Typical examples:
— shortint
— long int
— unsigned int

Some Examples of Data Types

Int
0, 25, -156, 12345, -99820
char
A
float

23.54, —0.00345, 25.0
2.5E12, 1.234e-5

E or e means “10 to the
power of”

Constants

Constants

_

Constants

/

Integer

Numeric

floating-poamt

AN

Character
Constants

/

single

character

\

string

Integer Constants

« Consists of a sequence of digits, with possibly a p lus or a minus
sign before it.

— Embedded spaces, commas and non-digligthenacterte e ara@oit
permitted between digits.

« Maximum and minimum values (for 32 -bit representations)
Maximum ;. 2147483647
Minimum . — 228748365843

Floating -point Constants

Can contain fractional parts.

Very large or very small numbers can be represented

23000000 can be represented as 2.3e7

Two different notations:

1. Decimal notation
25.0, 0.0034, .84, -2.234

2. Exponential (scientific) notation
3.45e23, 0.123e-12, 123E2

e means “10 to the
power of”

Single Character Constants

« Contains a single character enclosed within a pair of single quote
marks.

— Examples :: 2', '+, Z

 Some special backslash characters
“\m” neawlilivee
A's Hoorzoorigd It eddo
\” Ssnytecadee
A ddobldeygatde
AV reahd bestn
0 mulll

String Constants

e Sequence of characters enclosed in double quotes.

— The characters may be letters, numbers, special cha racters and
blank spaces.

 Examples:
“niceﬂ’ HGOOd Morningﬂ’ H3+6H’ H3H’ “CH

» Differences from character constants:
— ‘C’and “C” are not equivalent.
— ‘C’ has an equivalent integer value while “C” does

Declaration of Variables

There are two purposes:
1. Ittells the compiler what the variable name is.
2. It specifies what type of data the variable will hol holdl.

General syntax:
data-type variable-liBst;

Examples:
int velocity, distance;
int a, b, c, d;
float temp;
char flag, option;

A First Look at Pointers

A variable is assigned a specific memory location.
— For example, a variable speed is assigned memory location
1350.
— Also assume that the memory location contains the d ata
value 100.
— When we use the name speed in an expression, it refers to
the value 100 stored in the memory location.

distance = speed * time;

 Thus every variable has an address (in memory), and its
contents.

Contd.

e [n C terminology, in an expression
speed refers to the contents of the memory location.
&speed refers to the address of the memory location.

 Examples:
printf (“%f %f %f", speed, time, distance);
scanf (“%f %f”, &speed, &time);

An Example

#include <stdio.h>
main()

{

float speed, time, distance;
scanf (“%f %f”, &speed, &time);

distance = speed * time;
printf (“\n The distance traversed is: \n”, distanc e);

Dept. of CSE, IIT KGPY

Assignment Statement

Used to assign values to variables, using the assig nment
operator (=).

General syntax:
variable_name = expression;

Examples:
velocity = 20;
b=15; temp =12.5;
A=A+10;
v=u+f*t;
S=u*t+05*f*t*t;

Contd.

e A value can be assigned to a variable at the time t
declared.

int speed = 30;
char flag ="y’

« Several variables can be assigned the same value us
multiple assignment operators.

a=b=c=5;
flagl = flag2 = ‘y’;
speed = flow = 0.0;

he variable is

Ing

Operators in Expressions

Operators

Arithmetic
Operators

Relational
Operators

Logical
Operators

Arithmetic Operators

Addition ::
Subtraction ::
Division ::
Multiplication ::
Modulus ::

Examples:
distance = rate * time ;
netincome = income - ta&ax ;
speed = distance / time ;
area = PI * radius * radius;
y=a*x*x+b*x+c;
guotient = dividend / divisor;
remain =dividend % divisor;

Contd.

Suppose x and y are two integer variables, whose va lues
are 13 and 5 respectively.

Xty

X—-Yy
X*y

X1y

X%y

Operator Precedence

In decreasing order of priority
1. Parentheses:: ()
2. Unary minus :: -5
3. Multiplication, Division, and Modulus
4

. Addition and Subtraction

For operators of the same priority, evaluation is from left to right
as they appear.

Parenthesis may be used to change the precedence of operator
evaluation.

Examples: Arithmetic expressions

atb*c-d/e =2 at+t(b*c)-(d/e)
a*—b+d%e-f 2> a*(-b)+(d%e)-f
a—-b+c+d =2 (((@a—b)+c)+d)
X*y*z 2> (x*y)*2)
atb+c*d*e =2 (a+b)+((c*d)*e)

Integer Arithmetic

When the operands in an arithmetic expression are i ntegers, the

expression is called integer expression, and the operation is
called integer arithmetic.

Integer arithmetic always yields integer values.

Real Arithmetic

Arithmetic operations involving only real or floati Ng- |point
operands.

Since floating-ppoihvahlassaeeaosanddddddibennmmbelbet of
significant digits permissible, the final value is an approximation
of the final result.

1.0/ 3.0 * 3.0 will have the value 0.99999 and not 1.0

The modulus operator cannot be used with real opera nds.

Mixed -mode Arithmetic

 When one of the operands is integer and the otheri s real, the
expressionis called a mixed-mode arithmetic expression.

If either operand is of the real type, then only re al arithmetic is
performed, and the result is a real number.

25/10 = 2
25/10.0 = 2.5

Some more issues will be considered later.

Type Casting

Int a=10, b=4, c;
float X, y;

c=alb;
X=alb;
y = (float) a/ b;

The value of ¢ will be 2
The value of x will be 2.0
The value of y will be 2.5

Relational Operators

 Used to compare two quantities.
IS less than
IS greater than
Is less than or equal to
IS greater than or equal to
IS equal to

Is not equal to

Examples

10 > 20 IS false
25 <355 IS true
12 > (7 + 5) is false

 When arithmetic expressions are used on either side
operator, the arithmetic expressions will be evalua
then the results compared.

a+b>c-d isthe sameas (@Hb)> (c+d)

of a relational
ted first and

Examples

« Sample code segmentin C

if (X>vy)

printf (“%d is larger\n"n¥k)x);
else

printf (“%d is larger\n’n{)y);

Logical Operators

 There are two logical operators in C (also called| ogical
connectives).

&& = Logical AND
|| = Logical OR

 What they do?

— They act upon operands that are themselves logical
expressions.

— The individual logical expressions get combined int 0 more
complex conditions that are true or false.

Logical Operators

— Logical AND
* Result is true if both the operands are true.

— Logical OR
* Resultis true if at least one of the operands are

X && Y

FALSIE

FALSE

FALSIE

Input / Output

o printf

— Performs output to the standard output device (typi
defined to be the screen).

— It requires a format string in which we can specify
* The text to be printed out.
» Specifications on how to print the values.
printf ("The number is %d.\n"nhuma)m) ;

* The format specification %d causes the value listed after the
format string to be embedded in the output as adec imal number in
place of %d.

o Output will appear as: The number is 125.

Input / Output

e scanf

— Performs input from the standard input device, whic his the
keyboard by default.
— It requires a format string and a list of variables Into which
the value received from the input device will be st ored.
— It is required to put an ampersand (&) before then ames of
the variables.
scanf ("%d", &size) ;
scanf ("%c", &nextchar) ;
scanf ("%f", &length) ;
scanf (“%d %d”, &a, &b);

