Properties of Context Free Languages

Pallab Dasgupta, Professor, Dept. of Computer Sc & Engg

Theorem: CFLs are closed under concatenation

If L_1 and L_2 are CFLs, then L_1L_2 is a CFL.

Proof:

- 1. Let L_1 and L_2 be generated by the CFG, $G_1 = (V_1, T_1, P_1, S_1)$ and $G_2 = (V_2, T_2, P_2, S_2)$, respectively.
- 2. Without loss of generality, subscript each nonterminal of G_1 with a 1, and each nonterminal of G_2 with a 2 (so that V1 \cap V2 = Φ).
- 3. Define the CFG, G, that generates L_1L_2 as follows: G = (V₁ U V₂ U {S}, T₁ U T₂, P₁ U P₂ U {S \rightarrow S₁S₂}, S).
- 4. Each word generated thus is a word in L_1 followed by a word in L_2 .

Example

- Let L_1 be PALINDROME, defined by: S \rightarrow aSa | bSb | a | b | λ
- Let L_2 be { $a^nb^n \mid n \ge 0$ } defined by: S $\rightarrow aSb \mid \lambda$
- Then the concatenation language is defined by:

$$\begin{array}{l} S \rightarrow \ S_1 S_2 \\ S_1 \rightarrow \ a S_1 a \, | \, b S_1 b \, | \, a \, | \, b \, | \, \lambda \\ S_2 \rightarrow \ a S_2 b \, | \, \lambda \end{array}$$

Theorem: CFLs are closed under Kleene star

If L_1 is a CFL, then L_1^* is a CFL.

Proof:

- **1.** Let L_1 be generated by the CFG, $G_1 = (V_{1}, T_1, P_1, S_1)$.
- **2.** Without loss of generality, subscript each nonterminal of G_1 with a 1.
- 3. Define the CFG, G, that generates L_1^* as follows: G = (V₁ U {S}, T₁, P₁ U {S \rightarrow S₁S | λ }, S).
- 4. Each word generated is either λ or some sequence of words in L₁.
- **5.** Every word in L_1^* (i.e., some sequence of 0 or more words in L_1) can be generated by G.

Example

- Let L_1 be { $a^nb^n \mid n \geq 0 \}$ defined by: $S \rightarrow \ aSb \mid \lambda$
- Then L_1^* is generated by: $S \rightarrow S_1 S \mid \lambda$ $S_1 \rightarrow aS_1 b \mid \lambda$

None of these example grammars is necessarily the most *compact* CFG for the language it generates.

Intersection and Complement

Theorem: CFLs are not closed under intersection

If L_1 and L_2 are CFLs, then $L_1 \cap L_2$ may not be a CFL.

Proof:

- 1. L₁ = { $a^n b^n a^m \mid n, m \ge 0$ } is generated by the following CFG: S $\rightarrow XA$ X $\rightarrow aXb \mid \lambda$ A $\rightarrow Aa \mid \lambda$
- 2. L₂ = { $a^n b^m a^m | n, m \ge 0$ } is generated by the following CFG: S $\rightarrow AX$ X $\rightarrow aXb | \lambda$ A $\rightarrow Aa | \lambda$

3. $L_1 \cap L_2 = \{ a^n b^n a^n | n \ge 0 \}$, which is known not to be a CFL (pumping lemma).

Theorem: CFLs are not closed under complement

If L_1 is a CFL, then $\overline{L_1}$ may not be a CFL.

Proof:

They are closed under union. If they are closed under complement, then they are closed under intersection, which is false. More formally,

- **1.** Assume the complement of every CFL is a CFL.
- **2.** Let L_1 and L_2 be 2 CFLs.
- 3. Since CFLs are close under union, and we are assuming they are closed under complement,

 $\overline{L_1} \cup \overline{L_2} = L_1 \cap L_2$ is a CFL.

- 4. However, we know there are CFLs whose intersection is not a CFL.
- **5.** Therefore, our assumption that CFLs are closed under complement is false.

Theorem: The intersection of a CFL and an RL is a CFL.

If L_1 is a CFL and L_2 is regular, then $L_1 \cap L_2$ is a CFL.

Proof:

- 1. We do this by constructing a PDA I to accept the intersection that is based on a PDA A for L₁ and a FA F for L₂.
- 2. Convert A, if necessary, so that all input is read before accepting.
- 3. Construct a set Y of all A's states $y_{1, y_{2, \dots}}$ and a set X of all F's states x_{1} , x_{2} ,
- 4. Construct { (y,x) | for all $y \in Y$, for all $x \in X$ }.
- 5. The start state of I is (y_0, x_0) , where y_0 is the label of A's start state, and x_0 is F's initial state.

Theorem (contd.)

6. Regarding the next state function, the x component changes only when the PDA is in a READ state:

- If in (y_i, x_j) and y_i is not a READ state, its successor is (y_k, x_j) , where y_k is the appropriate successor of y_i .

- If in (y_i, x_j) and y_i is a READ state, reading a, its successor is (y_k, x_l), where
 -- y_k is the appropriate successor of y_i on an a.
 - -- $\delta(\mathbf{x}_j, \mathbf{a}) = \mathbf{x}_l$.

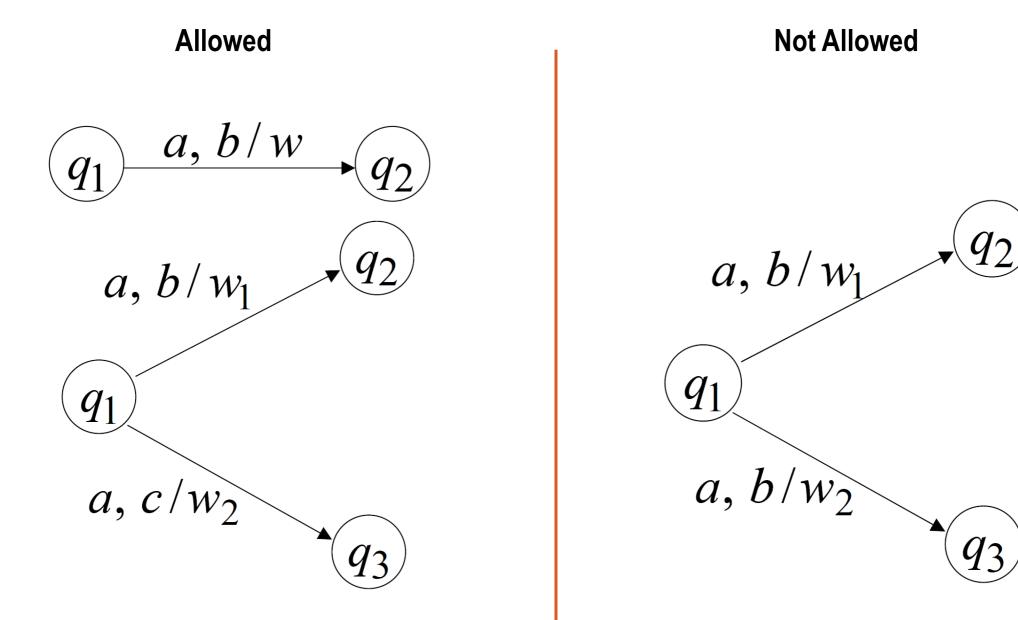
7. I's ACCEPT states are those where the y component is ACCEPT and the x component is final.

If the y component is ACCEPT and the x component is not final, the state in I is REJECT (or omitted, implying a crash).

Example

- Let L₁ be the CFL EQUAL of words with an equal number of a's and b's. Draw its PDA.
- Let L2 = (a + b)*a.
 Draw its FA.
- Perform the construction of the intersection PDA.

DPDAs



DPDAs

Allowed: Something must be matched from the stack

 $\lambda, b/w$ q_1 q_2 $\lambda, b/w_1$ q_1 $\lambda, c/w_2$ q_3

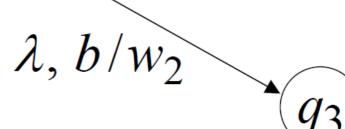
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Not Allowed

 $\lambda, \lambda/\lambda$ q_2 q_1

 $\lambda, b/w_1$

 q_2



NPDAs are more powerful than DPDAs

We will show that:

- There is a context-free language L (accepted by an NPDA)
- L is not deterministic context-free (not accepted by a DPDA)

The language is: $L = \{a^n b^n\} \cup \{a^n b^{2n}\} n \ge 0$

The language *L* is context-free. The Context-free grammar for *L*

- $S \rightarrow S1 | S2$
- S1→aS1b |λ
- S2 \rightarrow aS2bb | λ

There is an NPDA that accepts L

Theorem: *L* = {aⁿbⁿ}∪{aⁿb²ⁿ} is not deterministic context-free

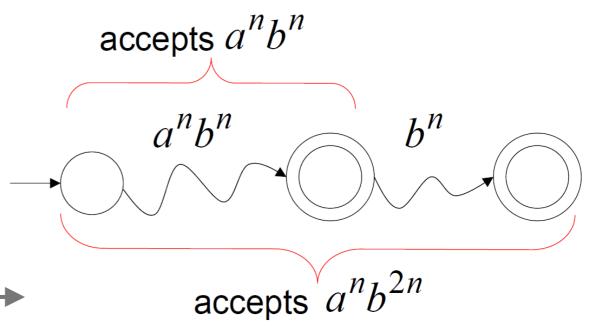
The language : $L = \{a^n b^n\} \cup \{a^n b^{2n}\} CFL$ (i.e. there is no DPDA that accepts L).

• Each 'a' is to be matched by either one or two 'b's. An initial choice must be made. *Proof: (by contradiction)*

Assume the opposite, i.e. that *L* is deterministic context free.

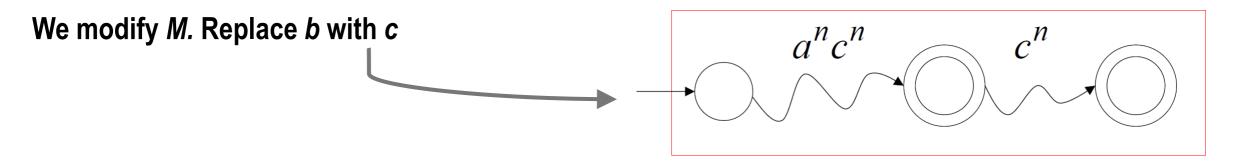
Therefore: there is a DPDA *M* that accepts *L*.

- 1. Fact 1: The language {aⁿbⁿcⁿ} is not context-free. (by Pumping Lemma)
- Fact 2: The language L ∪ {aⁿbⁿcⁿ} is not context-free. (by Pumping Lemma)
- But, if we have a DPDA like this one here

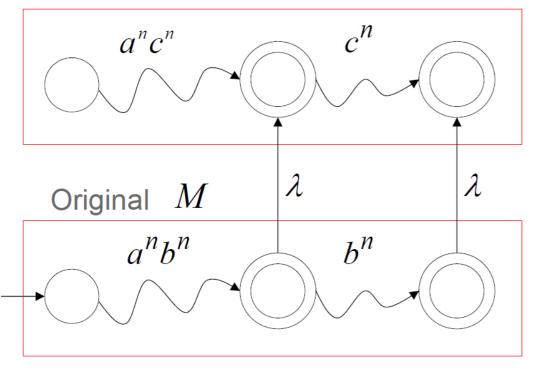


then we can construct an NPDA to accept $L \cup \{a^nb^nc^n\}$. HOW?

Theorem: *L* = {aⁿbⁿ}∪{aⁿb²ⁿ} is not deterministic context-free



Modified M



The DPDA for $\{a^nb^n\}\cup\{a^nb^{2n}\}\$ and $\{a^nc^n\}\cup\{a^nc^{2n}\}\$ are combined to create an NPDA for L \cup $\{a^nb^nc^n\}$

- Therefore $L \cup \{a^n b^n c^n\}$ is a CFL.
- But by the Pumping Lemma we know that L ∪ {aⁿbⁿcⁿ} is not a CFL.
- Therefore our assumption that we can have a DPFA for L is wrong.
- Therefore L is not deterministic context free