
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 

Time Complexity 

Foundations of Computing Science 

1
 

Pallab Dasgupta 

Professor,  

Dept. of Computer Sc & Engg 



Measuring Complexity 

Definition 

• Let M be a deterministic Turing machine that halts on all inputs. The running time or time complexity of 
M is the function f: NN, where f(n) is the running time of M, we say that M runs in time f(n) and that M 

is an f(n) time Turing machine. Customarily we use n to represent the length of the input 

 

Complexity Analysis 

• Worst-case Analysis 

• Longest running time of all inputs of a particular length 

• Average-case Analysis 

• Average of all the running times of inputs of a particular length 

2 



Big-O and Small-o Notations 

Asymptotic Upper Bound (O) 

• Let f and g be functions f, g: NR+. Say that f(n) = O(g(n)) if positive integers c and n0 exist such that 

for every integer n ≥ n0 

    f(n) ≤ c.g(n) 

• When f(n) = O(g(n)) we say that g(n) is an upper bound for f(n), or more precisely, that g(n) is an 

asymptotic upper bound for f(n), to emphasize that we are suppressing constant factors 

 

Asymptotic Strict-Upper Bound (o) 

• Let f and g be functions f, g: NR+. Say that f(n) = o(g(n)) if 
 

    lim                    = 0 
 

• In other words, f(n) = o(g(n)) means that, for any real number c > 0, a number n0 exist, where f(n) < c.g(n) 

for all n ≥ n0 

3 

f(n) 

g(n) n 

8
 



Analyzing Algorithms 

Let t: NR+ be a function. Define the time complexity class, TIME(t(n)), to be the collection of all languages 

that are decidable by an O(t(n)) time Turing machine 

 

Example 

• Analyze the TM algorithm for the language A = {0k1k | k ≥ 0} 

• There can be different TM constructions (M1, M2, M3) deciding the language [see Sipser’s Book, pp. 207-

209] 

• The total-time taken by them is different 

• M1 decides A in time O(n2), therefore A∈ TIME(n2) 

• M2 decides A in time O(nlogn), therefore A∈ TIME(n.logn) 

• M3 decides A in time O(n), therefore A∈ TIME(n) 

4 



Complexity Relationships among Models 

Definition 

• Let NTM be a non-deterministic Turing machine that is a decider. The running time of NTM is the function 
f: N  N, where f(n) is the maximum number of steps that NTM uses on any branch of its computation 

on any input n 

 

Theorems 

• Let t(n) be a function, where t(n) ≥ n. Then every t(n) time multi-tape Turing machine has an equivalent 

O(t2(n)) time single-tape Turing machine 

 

• Let t(n) be a function, where t(n) ≥ n. Then every t(n) time non-deterministic single-tape Turing machine 

has an equivalent 2O(t(n)) time deterministic single-tape Turing machine 

5 



The Class P (Polynomial Time) 

Definition 

• P is the class of languages that are decidable in polynomial time on a deterministic single-tape Turing 

machine. In other words, 

    P =  U TIME(nk) 

The role of P in theory: 

• P is invariant for all models of computation that are polynomially equivalent to the deterministic single-

tape Turing machine 

• P roughly corresponds to the class of problems that are realistically solvable on a computer 

Examples of Problems in P 

• PATH = {<G, s, t> | G is a directed graph that has a directed path from s to t} 

• RELATIVE_PRIME = {<x, y> | x and y are relatively prime} 

• Every context-free language is a member of P 

6 

k 



The Class NP (Non-deterministic Polynomial Time) 

Definitions 

• A verifier for a language A is an algorithm V, where 

   A = {w | V accepts <w, c> for some string c}. 

 We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in 
polynomial time in the length of w. 

• A language A is polynomially verifiable if it has a polynomial time verifier. 

• NP is the class of languages that have polynomial time verifiers 

Examples of Problems in NP 

• HAM_PATH = {<G, s, t> | G is a directed graph 

            with a Hamiltonian path from s to t} 

• COMPOSITES = {x | x = pq, for integers p, q > 1} 

• CLIQUE = {<G, k> | G is an undirected graph with k-clique} 

• SUBSET-SUM = {<S, t> | S = {x1, x2, …, xk} and for some 

            {y1, y2, …, yl}      {x1, x2, …, xk}, we have Σyi = t} 

7 
U

I 



The Class NP (contd…) 

 

Theorem 

• A language is in NP if and only if it is decided by some non-deterministic polynomial time Turing 

machine 

 

Definition 

• Non-deterministic time complexity class is defined as, 

   NTIME(t(n)) = {L | L is a language decided by a O(t(n)) time non-deterministic Turing machine} 

 

 

Corollary: NP =  U TIME(nk) 

 

8 

k 



The P Versus NP Question 

Referring (loosely) to polynomial time solvable as solvable “quickly”, 

• P = the class of languages for which membership can be decided quickly 

• NP = the class of languages for which membership can be verified quickly 

 

Unsolved Problem in Theoretical Computer Science 

• P = NP?   OR P ≠ NP? 

 

 

Best method known for solving languages in NP deterministically uses exponential time. In other words, we 

can prove that 

   NP     EXPTIME = U TIME( 2n    ) 

 But, we do not know whether NP is contained in a smaller deterministic time complexity class 

9 

k 

k 

U
I 



NP-Completeness 

Polynomial Time Reducibility 

• A function f: Σ*  Σ* is a polynomial time computable function if some polynomial time Turing machine 

M exists that halts with just f(w) on its tape, when started on any input w 

 

• Language A is polynomial time mapping reducible, or simply polynomial time reducible, to language B, 

written A ≤p B, if a polynomial time computable function f: Σ*  Σ* exists, where for every w, 

    w∈ A  f(w)∈ B 

 The function f is called the polynomial time reduction of A to B 

 

Theorem 

• If A ≤p B and B ∈ P, then A ∈ P 

• 3SAT is polynomial time reducible to CLIQUE 

10 



NP-Completeness (contd...) 

Definition 

• A language B is NP-complete if it satisfies two conditions: 

• B is in NP, and 

• Every A in NP is polynomial time reducible to B 

 

Theorems 

• If B is NP-complete and B∈ P, then P = NP 

• If B is NP-complete and B ≤p C  for C in NP, then C is NP-complete 

 

COOK-LEVIN’s Theorem 

• SAT is NP-complete (other form: SAT∈ P if and only if P = NP) 

• Corollary: 3SAT is NP-complete 

 

11 



Additional NP-Complete Problems 

Examples of NP-complete Problems 

• CLIQUE = {<G, k> | G is an undirected graph with k-clique} 

 

• VERTEX-COVER = {<G, k> | G is an undirected graph that 

     has a k-node vertex cover} 

 

• HAM_PATH = {<G, s, t> | G is a directed graph 

            with a Hamiltonian path from s to t} 

 

• UHAM_PATH = Hamiltonian path in undirected graph 

 

• SUBSET-SUM = {<S, t> | S = {x1, x2, …, xk} and for some 

            {y1, y2, …, yl}      {x1, x2, …, xk}, we have Σyi = t} 

12 


