Context-free Languages

Foundations of Computing Science

Pallab Dasgupta
Professor,
Dept. of Computer Sc & Engg

Context-free Grammar (CFG)

A context-free grammar (CFG) is a 4-tuple (V, Σ, R, S), where

- V is a finite set called the variables
- Σ is a finite set, disjoint from V, called the *terminals*
- R is a finite set of rules, with each rule being a variable and a string of variables and terminals
- $S \in V$ is the start variable

Few Terminologies / Notions:

- If u, v and w are strings of variables and terminals, and $A \rightarrow w$ is a rule of the grammar, we say that uAv yields uwv, written as uAv => uwv
- u derives v, written as $u \stackrel{*}{=} v$, if u = v or if a sequence $u_1, u_2, ..., u_k$ exists for $k \ge 0$ and $u = v_1 = v_2 = v_2 = v_k = v_k$
- The language generated by some context-free grammar (CFG), G, is called the context-free language (CFL), $L(G) = \{w \in \Sigma^* \mid S \stackrel{*}{=} > w\}$

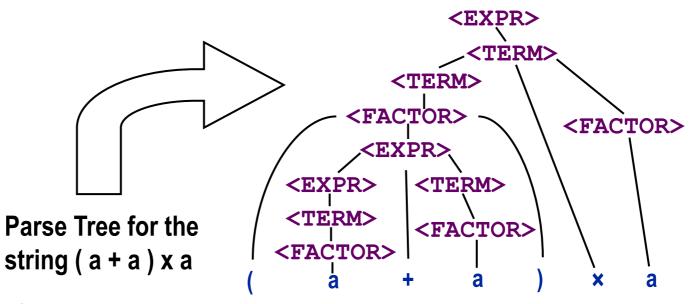
Example of Context-free Grammars

Example-1:

```
G_1 = (\{S\}, \{(,)\}, R, S), where set of rules (R), is S \rightarrow (S) \mid SS \mid \varepsilon
Here, L(G_1) = all strings of properly nested parenthesis
```

Example-2:

```
G_2 = (V, \Sigma, R, \langle EXPR \rangle), where V is \{\langle EXPR \rangle, \langle TERM \rangle, \langle FACTOR \rangle\} and \Sigma is \{a, +, \times, (,)\}. The rules (R) are \langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle TERM \rangle \mid \langle TERM \rangle 
\langle TERM \rangle \rightarrow \langle TERM \rangle \times \langle FACTOR \rangle \mid \langle FACTOR \rangle 
\langle FACTOR \rangle \rightarrow (\langle EXPR \rangle) \mid a
```



Designing Context-free Grammars

Example:

```
Let L(G_3) = equal number of 1s and 0s follow each other = \{0^n1^n \mid n \geq 0\} \ U \ \{1^n0^n \mid n \geq 0\} The grammar for the language \{0^n1^n \mid n \geq 0\} is S_1 \rightarrow 0S_11 \mid \varepsilon and the grammar for the language \{1^n0^n \mid n \geq 0\} is S_2 \rightarrow 1S_20 \mid \varepsilon Therefore, The complete grammar for the grammar L(G_3) is S \rightarrow S_1 \mid S_2 ; S_1 \rightarrow 0S_11 \mid \varepsilon ; S_2 \rightarrow 1S_20 \mid \varepsilon
```

Designing CFG for Regular Languages:

- Regular Languages → DFA
- If $\delta(q_i, a) = q_i$ is a transition in DFA; add the rule $R_i \rightarrow aR_j$ to CFG
- Add the rule $R_i \rightarrow \varepsilon$ to CFG if q_i is an accept state
- Make R_0 the start variable of CFG, where q_0 is the start state of DFA

Ambiguity

A string w is derived ambiguously in context-free grammar G iff it has two or more different leftmost derivations

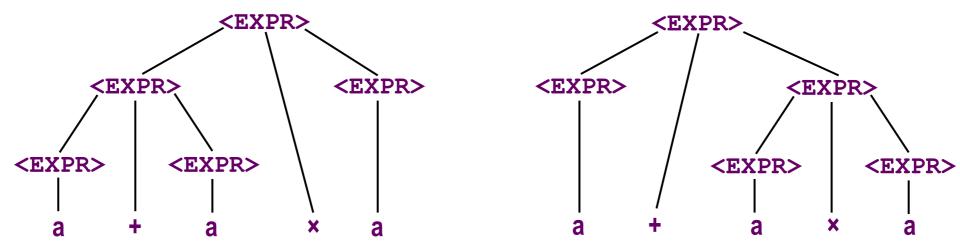
Grammar *G* is *ambiguous* iff it generates some string ambiguously

Example:

Consider the grammar G₄:

```
\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle \mid \langle EXPR \rangle \times \langle EXPR \rangle \mid (\langle EXPR \rangle) \mid a
```

• G_4 generates the string $a + a \times a$ ambiguously



Two Parse Trees for the Same String $a + a \times a$

Chomsky Normal Form

A context-free grammar is in *Chomsky Normal Form* iff every rule is of the form

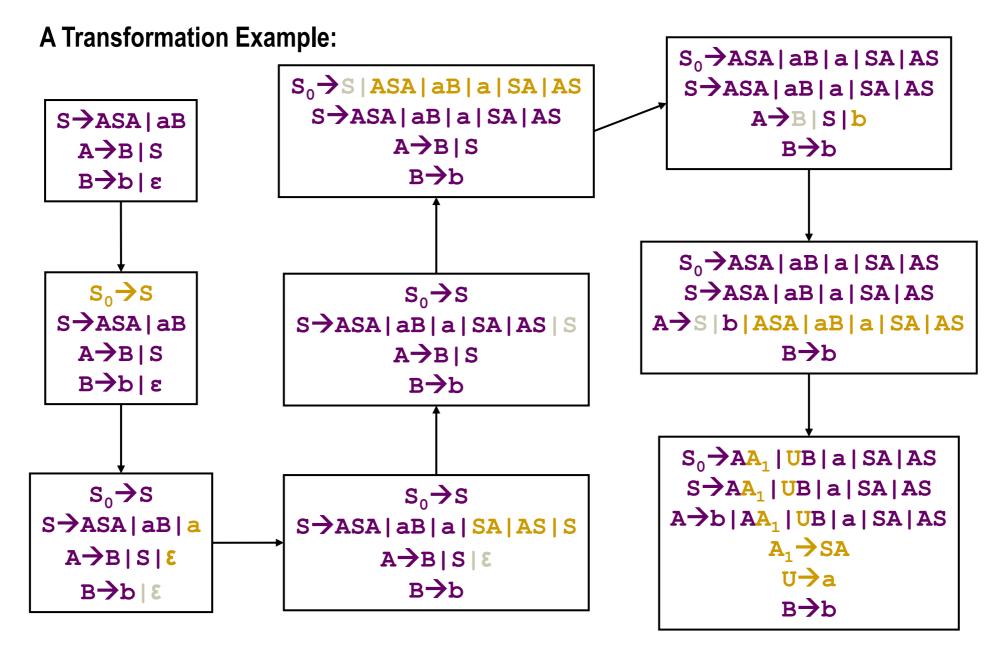
```
A \rightarrow BC and A \rightarrow a, where
```

- a is any terminal
- A, B and C are any variables except that B and C may not be start variable
- In addition, we permit the rule $S \rightarrow \varepsilon$, where S is the start variable

Theorem:

 Any context-free language is generated by a context-free grammar in Chomsky normal form

Any CFG → Chomsky Normal Form



Pushdown Automaton (PDA)

A pushdown automata (PDA) is a 6-tuple (Q, Σ , Γ , δ , q_0 , F), where

- Q, Σ , Γ and Γ are all finite sets
- Q is the set of states
- Σ is the *input alphabet*
- Γ is the stack alphabet
- $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow P(Q \times \Gamma_{\varepsilon})$ is the transition relation
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

Examples of PDA

Let the PDA M_1 be $(Q, \Sigma, \Gamma, \delta, q_1, F)$, where

$$Q = \{q_1, q_2, q_3, q_4\}$$

$$\Sigma = \{0, 1\}$$

$$\Gamma = \{0, \$\}$$

$$F = \{q_1, q_4\}$$

$$\delta \text{ is given by}$$

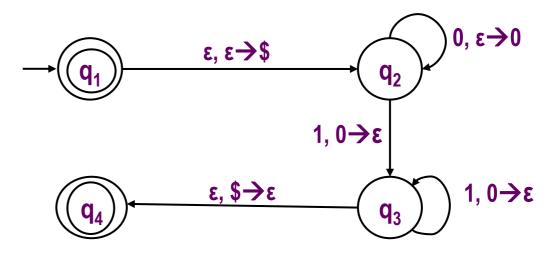
$$| q_2 |$$

$$| q_3 |$$

	Input	0			1			3		
	Stack	0	\$	3	0	\$	3	0	\$	3
	q_1									{(q ₂ , \$)}
ا ٠	q_2			{(q ₂ , 0)}	$\{(q_3, \epsilon)\}$					
	q_3				$\{(q_3, \epsilon)\}$				$\{(q_4, \epsilon)\}$	
	q_4									

PDA M₁ recognizes the language,

$$L(M_1) = \{0^n 1^n \mid n \ge 0\}$$



Acceptance/Recognition by PDA

A pushdown automaton $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ accepts input w if

- w can be written as $w = w_1 w_2 ... w_m$, where each $w_i \in \Sigma_{\varepsilon}$
- Sequences of states $r_0, r_1, ..., r_m \in Q$ and strings $s_0, s_1, ..., s_m \in \Gamma^*$ exists (the strings s_i represent the sequence of stack contents that M has on the accepting branch of the computation)
- The following *three* conditions are satisfied:
 - $r_0 = q_0$ and $s_0 = \varepsilon$ [M starts out properly, in the start state and with an empty stack]
 - For i = 0, 1, ..., m-1; we have $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma_{\varepsilon}$ and $t \in \Gamma^*$ [M moves properly according to the state, stack & next input symbol]
 - r_m ∈ F [an accept state occurs at the input end]

Theorem:

- A language is context-free if and only if some pushdown automaton recognizes it
 - Every regular language is context-free

Pumping Lemma for CFL

If A is a context-free language, then there is a number p (the pumping length), where, if s is any string in A of length at least p, then s may be divided into five pieces s = uvxyz satisfying the following conditions:

- For each i ≥ 0, uvⁱxyⁱz ∈ A
- |vy| > 0, and
- |vxy| ≤ p

Examples:

- The following languages (denoted by B, C, D) are not context-free:
 - B = $\{a^nb^nc^n | n \ge 0\}$
 - $C = \{a^ib^jc^k \mid 0 \le i \le j \le k\}$
 - D = $\{ww \mid w \in \{0,1\}^*\}$