
ij

'I

'""T', :J[_ ';("
THE POLYNOMIAL
HIERARCHY

Although the complexity classes we shall study now are in one sense byproducts
of our definition of NP, they have a remarkable life of their own.

17.1 OPTIMIZATION PROBLEMS

Optimization problems have not been classified in a satisfactory way within
the theory of P and NP; it is these problems that motivate the immediate
extensions of this theory beyond NP.

Let us take the traveling salesman problem as our working example. In
the problem TSP we are given the distance matrix of a set of cities; we want to
find the shortest tour of the cities. We have studied the complexity of the TSP
within the framework of P and NP only indirectly: We defined the decision
version TSP (D), and proved it NP-complete (corollary to Theorem 9.7). For
the purpose of understanding better the complexity of the traveling salesman
problem, we now introduce two more variants.

EXACTTSP: Given a distance matrix and an integer B, is the length of the
shortest tour equal to B? Also,

TSP COST:Given a distance matrix, compute the length of the shortest tour.
The four variants can be ordered in "increasing complexity" as follows:

TSP (D); EXACTTSP; TSP COST; TSP.

Each problem in this progression can be reduced to the next. For the last three
problems this is trivial; for the first two one has to notice that the reduction in

411

j
;1

I 412 Chapter 17: THE POLYNOMIALHIERARCHY

the corollary to Theorem 9.7 proving that TSP (D) is NP-complete can be used
to reduce HAMILTON PATH to EXACT TSP (the graph has a Hamilton path if
and only if the optimum tour has length exactly n + 1). And since HAMILTON
PATH is NP-complete and TSP (D) is in NP, we must conclude that there is a
reduction from TSP (D) to EXACT TSP.

Actually, we know that these four problems are polynomially equivalent
(since the first and the last one are, recall Example lOA). That is, there is a
polynomial-time algorithm for one if and only if there is for all four. Admittedly,
from the point of viewof the practical motivation for complexity theory (namely,
to identify problems that are likely to require exponential time) this coarse
characterization should be good enough. However, reductions and completeness
provide far more refined and interesting categorizations of problems. In this
sense, of these four variants of the TSP we know the precise complexity only of
the NP-complete problem TSP (D). In this section we shall show that the other
three versions of the TSP are complete for some very natural extensions ofNP.

The Class DP

Is the EXACT TSP in NP? Given a distance matrix and the alleged optimum
cost B, how can we certify succinctly that the optimum cost is indeed B? The
reader is invited to ponder about this question; no obvious solution comes to
mind. It would be equally impressive if we could certify that the optimum cost
is not B; in other words, EXACT TSP does not even appear to be in coNP. In
fact. the results in this section will suggest that if EXACT TSP is in NP UcoNP,
this would have truly remarkable consequences; the world of complexity would
have to be vastly different than it is currently believed.

However, EXACT TSP is closely related to NP and coNP in at least one
important way: Considered as a language, it is the intersection of a language
in NP (the TSP language) and one in coNP (the language TSP COMPLElv!ENT,
asking whether the optimum cost is at least B). In other words, an input is a
"yes" instance of EXACT TSP if and only if it is a "yes" instance of TSP. and a
"yes" instance of TSP COMPLEMENT. This calls for a definition:
Definition 17.1: Alanguage L is in the class DP if and only if there are two
languages L1 E NP and L2 E coNP such that L = L1 nL2. 0

Vifeshould warn the reader immediately against a quite common miscon
ception: DP is not NP n coNP t. There is a world of difference between these
two classes. For one thing, DP is not likely to be contained even in NPUcoNP,
let alone the much more restrictive NP n coNP. The intersection in the defi
nition of NP ncoNP is in the domain of classes of languages, not languages as

Wemean, these two classes are not known or believed to be equal. In the absence of a
proof that P of NP one should not be too emphatic about such distinctions.

17.1 Optimization Problems 413

with DP.
For another important difference between NP ncoNP and DP the latter

is a perfectly syntactic class, and therefore has complete problems: Consider
for example the following problem:
SAT-UNSAT: Given two Boolean expressions t/J, t/J', both in conjunctive normal
form with three literals per clause. Is it true that t/J is satisfiable and 1/ is not?
Theorem 17.1: SAT-UNSAT is DP-complete.
Proof: To show that it is in DP we have to exhibit two languages L1 ENP and
~2 E coNP such that the set of all "yes" instances of SAT-UNSAT is L1nL2. This
IS easy: L1 = {(t/J,t/J'): t/J is satisfiable} and L2 = {(t/J,t/J'): t/J' is unsatisfiable}.

To show completeness, let L be any language in DP. We have to show that
L reduces to SAT-UNSAT. All we know about L is that there are two languages
L1 E NP and L2 E coNP such that L = L1 nL2. Since SAT is NP-complete,
we know that there is a reduction Rl from L1 to SAT, and a reduction R2 from
the complement of L2 to SAT. The reduction from L to SAT-UNSAT is this for
any input x: . '

R(x) = (Rl(X),R2~X)).

We.have that R(x) is a "yes" instance of SAT-UNSAT if and only if Rl(X) is
satisfiable .and R2(x) is not, which is true if and only if x E L1 and x E L2• or
equivalently x E L. 0 .

As usual, starting from our basic "satisfiability-oriented" complete problem
we can show many more DP-completeness results:
Theorem 17.2: EXACT TSP is DP-complete.
Proof: \Ve already argued that it is in DP. To prove completeness, we shall
reduce SAT-UNSAT to it. So, let (t/J,1/) be an instance of SAT-UNSAT. We shall
use the reduction from 3SAT to HAMILTON PATH (recall the proof of Theorem
9.7) to produce from (t/J,1/) two graphs (G, G'), each of which has a Hamilton
path if and only if the corresponding expression is satisfiable. But our construc
tion will he novel in this way: Whether or not the expressions are satisfiable,
the graphs G and G' will always contain a broken Hamilton path, that is two
node-disjoint paths that cover all nodes. '

To this end, we modify slightly each expression so that it has an almost
satisfying truth assignment, that is, a truth assignment that satisfies all clauses
except for one. This is easy to do: We add a new literal, call it z, to all clauses,
and add the clause ('z). This way, by setting all variables to true we satisfy
all clauses except for the new one. We then turn the expression into one with
three literals per clause by replacing the clause (Xl V x2 V X3 V z), say, by the
two clauses (Xl V X2 V w) and (,w V X3 V z).

If we now perform the reduction in Theorem 9.7 starting from a set of
clauses that has such an almost satisfying truth assignment, call it T, it is easy

414 Chapter 17: THE POLYNOMIAL HIERARCHY

to see that the resulting graph always has a broken Hamilton path: It starts at
node 1, it traverses all variables according to T, and continues to the clauses
except for the one that may be unsatisfied, where the path is broken once (you
may want to examine the "constraint gadget" in Figure 9.6 to verify that it
causes at most one such break). The path then continues normally up to node
2.

We shall use this fact to show that SAT-UNSAT can be reduced to EXACT
TSP. Given an instance (r/>, ¢/) of SAT-UNSAT, we apply to both r/> and r/>' the
reduction to HAMILTON PATH, to obtain two graphs, G and G', respectively,
both guaranteed to have broken Hamilton paths. We next combine the two
graphs in a cycle by identifying node 2 of G with node 1 of G', and vice-versa
(Figure 17.1). Let n be the number of nodes in the new graph.

j!
-'f!

1 2

2 1

Figure 17-1. CombiningG and G'.

We next define distances between the nodes of the combined graph to
obtain an instance of the TSP. The distance between nodes i and j are defined
as follows: If [i,j] is an edge of either graph G or graph G', then the distance
is one. If [i,j] is not an edge, but both i and j are nodes of graph G then its
distance is two; all other non-edges have distance 4.

What is the length of the shortest tour of this instance of the traveling
salesman problem? Obviously, this depends on whether r/> and r/>' are satisfiable
or not. If they are both satisfiable, then the optimum cost is n, the number of
nodes in the combined graph (there is a Hamilton cycle in the combined graph).
If they are both unsatisfiable, then the optimum cost is n + 3 (the optimum
tour combines the two broken Hamilton paths, and thus both a non-edge of G
and a non-edge of G' will have to be used). If r/> is satisfiable and r/>' is not, then
the optimum cost is n+2 (a non-edge of G' will have to be used, but not of G).
And if r/> is unsatisfiable and r/>' is satisfiable, then the optimum cost is n + 1.

17.1 Optimization Problems 415

It follows that (r/>, r/>') is a 'yes" instance of SAT-UNSAT if and only if the
optimum cost is n + 2. Taking B to be equal to this number completes our
reduction from SAT-UNSAT to EXACT TSP. 0

The "exact cost" versions of all NP-complete optimization problems that
we have seen (INDEPENDENT SET, KNAPSACK, MAX-CUT, MAX SAT, to name a
few) can be shown OP-complete, each by a different trick that combines two
instances, and forces the optimum cost to precisely reflect the status of the two
expressions. SO,DP appears to be the natural niche of the "exact cost" aspect
of optimization problems.

But OP is much richer than this. For example, besides SAT-UNSAT, there
are two more satisfiability-related problems in OP:
CRITICAL SAT: Given a Boolean expression r/>, is it true that r/> is unsatisfiable,
but deleting any clause makes it satisfiable?
UNIQUE SAT: Given a Boolean formula r/>, is it true that it has a unique satisfying
truth assignment?

CRITICAL SAT exemplifies an important and novel genre of problems, those
asking whether the input is critical with respect to a given property, that is,
it has the property but its slightest unfavorable perturbation does not. Other
examples:

CRITICAL HAMWrON PATH: Given a graph, is it true that it has no Hamilton
path, but addition of any edge creates a Hamilton path?
CRITICAL 3-COLORABILITY: Given a graph, is it true that it is not 3-colorable,
but deletion of any node makes it 3-colorable?
All three "critical" problems are known to be OP-complete. On the other
hand UNIQUE SAT, and many other problems asking whether a given instance
has a unique solution, are simply not known to be in any weaker class. They
are not known (or believed) to be OP-complete (see the references). Inciden
tally, UNIQUE SAT should not be confused with the class UP of unambiguous
nondeterministic computations (recall Section 12.2). The two address very dif
ferent aspects of unique solutions in decision problems: UNIQUE SAT is about
determining whether the solution exists and is unique; UP concerns the compu
tational power of instances that are guaranteed either to have a unique solution
or no solution. The satisfiability problem for UP, call it UNAMBIGUOUS SAT,
would be the following: Given a Boolean expression that is known to have at
most one satisfying truth assignment, does it have one? This is a completely
different problem than UNIQUE SAT.

The Classes pNP and FpNP

One can look at OP as the class of all languages that can be decided by an oracle
machine (recall Section 14.3) of a very special nature: The machine makes two

416 Chapter 17: THE POLYNOMIALHIERARCHY

queries to a SAToracle, and then accepts if and only if the first answer was
"yes" and the second was "no." Obviously, one can generalize this to situations
where the acceptance pattern is any fixed Boolean expression (in the case of
DP, for example, the expression is Xl 1\ -'X2, see the references).

But the more interesting generalization is to allow any polynomial number
of queries, and in fact queries computed adaptively, based on the answers of
previous queries. This way we arrive at the class pSAT, the class of all languages
decided by polynomial-time oracle machines with a SAToracle. Since SATis NP
complete, instead of it we could use as an oracle any language in NP-this is
why we can equivalently write pSAT as pNP. Yet another name for this class
is A21>;this name identifies pNP as one of the first levels of an important
progression of classes, discussed in the next section.

Having defined pNP, we can now define its corresponding class of [unctions
FpNP (recall FP and FNP in Chapter 10). That is, FpNP is the class of all
functions from strings to strings that can be computed by a polynomial-time
'Iuringmachine with a SAToracle. In fact, we shall be much more interested
in FpNP than in pNP, because the former class happens to have many natu
ral complete problems, including many important optimization problems. For
example, FpNP finally provides the sought precise characterization of the com
plexity of the TSP.

There are several natural FpNP -complete problems. The version of satis-
fiability appropriate for this level is the following:
MAX-WEIGHTSAT:Given a set of clauses, each with an integer weight, find the
truth assignment that satisfies a set of clauses with the most total weight.
But our reductions this time will start with a problem that is even closer to
computation than satisfiability:
MAXOUTPUT:We are given a nondeterministic Turing machine N and its
input In. N is such that, on input In, and for any sequence of nondeterministic
choices, it halts after O(n) steps with a binary string of length n on its output
string. We are asked to determine the largest output, considered as a binary
integer, of any computation of N on 1".
Theorem 17.3: MAXOUTPUTis FpNP -complete.
Proof: Let us first point out that MAXOUTPUT,along with any optimization
problem whose decision version is in NP, is in FpNP. The algorithm is essen
tially the one used for the TSP (Example lOA): Given N and In, we repeatedly
ask whether there is a sequence of nondeterministic' choices leading to an out
put larger than an integer x. We repeat this for various integers X, converging
to the value of the optimum by binary search. Each such question can be an
swered in NP, and hence the resulting algorithm establishes that MAXOUTPUT
is in FpNP. (Incidentally, notice that the binary search algorithm is adaptive,
in that it makes nontrivial use of the answers to previous queries in order to. .

17.1Optimization Problems 417

construct the next query; in some sense, the result being proved suggests that
binary seach is the most general way of doing this.)

Suppose then that F is a function from strings to strings in FpNP. That
is, there is a polynomial-time oracle machine M? such that for all inputs X

MSAT(x) = F(x). We shall describe a reduction from F to MAXOUTPUT.
Since this is a reduction' between function problems, what is required is two
functions Rand S such that (a) Rand S are computable in logarithmic space;
(b) for any string X R(x) is an instance of MAXOUTPUT;and (c) S applied to
the maximum output of R(x) returns F(x), the value of the function on the
original input x.

Given X, we shall first describe the R part of the reduction, that is, how
to construct machine N and its input In. To start, define n = p2(lxl), where
p(.) is the polynomial bound of MSAT_this will give N plenty of time .to
simulate MSAT. We describe N informally, like any other nondeterministic
Turing machine; it will be clear that its transition relation can be constructed
in logarithmic space, starting from x. N on input In first generates X on a
string (this is the only place in the construction where x is needed), and then it •
simulates M on input x. The simulation is very easy and deterministic, except
for the query steps of MSAT.

Suppose that AISAT arrives at its first. query step, asking whether some
Boolean expression cPI is satisfiable. N simulates this by nondeterministically
guessing the answer Zl to this query-zi is 1 if cP is satisfiable, 0 otherwise. If
Zl = 0, then N simply continues its simulation of MSAT, naturally from state
qNO' But if Zl = 1, then N goes on to guess a satisfying truth assignment Tl for
cPl, and check that indeed TI satisfies cPl. If the test succeeds, then N goes on to
simulate MSATfrom state qYES' But if the test fails, then N writes the smallest
possible output, on, and halts; we call this an unsuccessful computation.

N continues this way to simulate MSATon input x, using its nondetermin
ism to guess the answers Zi, i = 1, ... of all queries. When MSAT would halt,
N outputs the bit string Zl Z2 ••• of the alleged answers to the queries, followed
by enough zeros to bring the total length of the output up to n, followedby the
output of MSAT (needed for the S part). This is a successful computation.

Many of the successful computations of N will be erroneous simulations of
MSAT, in the sense that maybe a query cPj was satisfiable, and still Zj = 0-
every successful computation will be correct about Zj = 1. But we claim that
the successiu! computation that outputs the largest integer does correspond
to a correct simulation. The reason is simple: Suppose that in the successful
computation which leads to the largest output, we have Zj = 0 for some j,
while cPj was satisfiable --say by truth assignment Tj. Take the smallest such
j (that is, the earliest such mistake). But then there is another successful
computation of N, which is identical to the present one up to the jth query
step, at which point it guesses Zj = 1, and then goes on to correctly guess

418 Chapter17: THE POLYNOMIALHIERARCHY

the truth assignment Tj, check it, and continue successfully to the end. But
the output of this other computation agrees with the present one in the first
j - 1 bits, and has a 1 in its jth position. Hence it represents a larger number,
contradicting the maximality of the present computation. It follows that the
computation of N with the largest output does indeed correspond to a correct
simulation ofM.

To summarize the structure ofN, it has Ixi states for writing x on its string,
and uses its p2(1xl)-long input as an alarm clock. The rest of its transition
relation reflects the transition function of M?, with the exception of the query
state, which is simulated by a simple nondeterministic routine. It should be
clear that N can be constructed in logarithmic space. As for the S part of the
reduction, F(x) can be simply read off the end of the largest output of N. 0

Theorem 11.4: MAX-WEIGHT SAT is FpNP-complete.
Proof: The problem is in FpNP: By binary search, using a SAT oracle, we can
find the largest possible total weight of satisfied clauses, and then, by setting
the variables one-by-orle, the truth assignment that achieves it.

We must now reduce MAX OUTPUT to MAX-WEIGHT SAT. As in the re
duction in Cook's theorem (Theorem 8.2), starting from the nondeterministic
machine N and its input In we can construct a Boolean expression ¢(N, n) such
that any satisfying truth assignment of ¢(N,n) corresponds to a legal compu
tation of N on input In. All clauses in ¢(N,n) are given a huge weight, say
2n, so that any truth assignment that aspires to be optimum must satisfy all
clauses of ¢(N,n).

We now add some more clauses to ¢(N, n). Recall that in ¢(N, n) there
are variables corresponding to the symbol contained in every position of every
string of N, at every step. So, there are n variables, call them Y1, ... , Yn,
corresponding to the bits of the output string at halting. We add to our instance
ofMAX-WEIGHT SAT the one-literal clauses (Yi) : i= 1, ... , n, where clause (Yi)
has weight 2n-i. It is easy to see that, because of these new clauses, and their
weights that are the right powers of two, the optimum truth assignment must
now not represent just any legal computation of N on input 1", but it must
represent the computation that produces the output with the largest possible
binary integer value. Finally, for the S part of the reduction, from the optimum
truth assignment of the resulting expression (in fact, even from the optimum
weight alone!) we can easily recover the optimum output of N. 0

We can now proceed to the main result of this section:
Theorem 11.5: TSP is FpNP -complete.

Proof: We know that TSP is in FpNP (Example 10.4) To prove completeness,
we shall reduce MAX-WEIGHT SAT to it. Given any set of clauses C1, ... , Cm on
n variables Xl, ... ,Xn, with weights WI, ... , Wm, we shall construct an instance

_- _...----:-=====-==---="",",==-~",....----

17.1Optimization Problems 419
-.

of the TSP such that the optimum truth assignment of the set of clauses can be
easily recovered from the optimum tour.

The TSP instance will be given as usual in terms of a graph. All distances
that do not correspond to edges in the graph are prohibitively large, say W =
2::'1 Wi· The graph is a variant of that used in the NP-completeness proof
of the Hamilton path problem (see Figure 11.2, and compare with the proof of
Theorem 9.7). There are "choice"gadgets for the variables connected in tandem
as before, but the "constraint" gadgets for the clauses are now different: Each
constraint gadget consists of four parallel edges, three corresponding to the
literals of the clause (so that the tour will traverse one of the true literals in the
clause), plus an extra parallel edge functioning as an "emergency exit:" If the
clause is unsatisfied and has no true literals, then the three parallel edges will
not be available, and the emergency exit must be taken. All edges of the graph
have length 0 except for the emergency exits for the clauses, whose length is
the weight of the corresponding clause. This way, each time an emergency edge
is taken, the lost weight of the corresponding clause is accurately represented
in the cost of the tour.

e

"""""""Emergency" "
exits ': - - - - -,,,,,,,,

-,z

Figure 17-2. The overallconstruction.

What remains is perhaps the more subtle part of the construction, the
"consistency" gadget. Because of the new constraint gadget based on three
parallel edges (which is in some sense the "dual" of the triangle we used in
Figure 9.6), we must connect literal occurrences with the opposite literal in the

420 Chapter 17: THE POLYNOMIAL HIERARCHY

choice gadget, not with the same literal as before. More importantly, we must
allow for an edge corresponding to an occurrence of a true literal not to be
traversed (in the case that there are two or three true literals in the clause).
As a result, the "exclusive or" gadget in Figure 9.5 is not appropriate. We
must design a "nand" gadget, allowing for the possibility that neither edge is
traversed. Such a gadget would connect each literal edge of each clause with
the opposite literal in the corresponding choice gadget, ensuring that, once a
choice is made, the opposite literals cannot be traversed by the Hamilton cycle.

Our nand gadget is rather complicated (it has 36 nodes!), but the idea in
designing it is quite simple: After all, a nand gadget is nothing else but an
exclusive-or gadget, which also has the additional option of being "turned off,"
left untraversed. We can achieve this effect by using the "diamond gadget"
shown in Figure 17.3. This graph has the followinginteresting property, easily
checked with a little experimentation: Suppose that it is part of a graph so
that, as usual, only the black nodes have edges going to the rest of the graph.
Then, it can be traversed by a Hamilton cycle only in one of the two ways
shown in the figure: Either "from North to South," or "frpm East to West."
In other words, if a Hamilton cycle enters the graph from anyone of the four
black nodes, it will have to traverse the whole graph and exit from the opposite
node.

N

E

S

Figure 17-3. The diamond.

Our nand gadget is nothing else but our exclusive-or gadget of Figure 9.5,
only with its four vertical paths of length two replaced each by the diamond
gadget as shown in Figure 17.4(a). It is easy to see that, with this replacement,
the overall graph functions exactly as before, as an exclusive-or between its
upper and loweredge. The point is that nowwecan use the East-West endpoints
to turn off the device at will, by taking the horizontal path shown in the figure.
We shall represent the nand gadget as an exclusive-or gadget with an extra
path which, if traversed, can leave the rest of the device untraversed, and thus
"turned off" (Figure 17.4(b)).

17.1 Optimization Problems 421 .,

: :
(b)

Figure 17-4. The nand gadget.

We now have to modify slightly the "constraint" gadgets in a way that
allowsjust one of the possibly two or three parallel edges corresponding to true
literals in a clause to be traversed. Recall that each nand gadget corresponds
to an occurrence of a literal in a "clause. Order arbitrarily the three literals of
the clause as first, second, and third. The parallel path corresponding to the
first literal now starts by another choice (see Figure 17.5), where the choice is
between (1) turning oft the nand gate of the second literal (if that literal also
happens to be true), and (2) not turning it oft. Then the path continues with
another choice, that of turning off the third literal, in case it is also true, or
not turning it oft. The path corresponding to the second literal has only one
choice, between turning offthe third literal or not. The third literal has no such
choices. In other words, we have given the three literals priorities: If the first
literal is true, then it is traversed and must turn oft any of the other literals
that may also be true. Failing this, if the second literal is true, then it must
be traversed and possibly turn off the third literal, if true. Finally, if only the
third literal is true, then it must be traversed. And if no literal is T, then the
emergency exit must be taken.

The construction is now complete. To review it (see Figure 17.2), we start
with a choice for each variable, then four parallel paths for each clause, with
extra choices for each of the first two paths to turn oft the exclusive-or of the
subsequent paths, and finally the cycle is closed. Each literal occurrence edge
is connected with the opposite literal in the choicegadget of the corresponding
variable by a nand gadget. The emergency edge corresponding to clause C, has
length uu, all other edges have length zero, while the length of all non-edges is

422 Chapter 17: THE POLYNOMIAL HIERARCHY

Figure 17-5. The clause gadget.

prohibitively large, say W, the sum of all weights. '. . .
Consider now the optimum traveling salesman tour of this mstance. Obvi

ously, no non-edges are traversed, and thus the tour is in fact a Hamilton cycle
of the graph (and so our gadgets come into play). :rhe tour mus~ traverse the
choices for the variables, thus defining a truth assignment, call It T. It then
traverses the choices for the nand gates, turning some of them on and some
of them off. It finally traverses the clause part. For each clause it must be
the case that the tour traverses exactly one of the four parallel edges. This
edge can be either a literal that is true in T, or the emergency edge. All nand
gadgets corresponding to traversed literal occurrences must ~ave been turned
"on," while all corresponding to false or untraversed true literal occurrences
must be "off." Finally, the tour is closed, at a total cost equal to the sum of the
weights of the clauses not satisfied by T, that is, W minus the total. weight o~T.
It followsthat the minimum-length tour corresponds to the meximum-weight
truth assignment, and the proof is complete. 0
Corollary: TSPCOSTis FpNP -complete. .
Proof: Consider the variant of the MAX-WEIGHTSATproblem in which we
only return the optimum weight, rather than the optimum truth assignment.
It is easy to see that this problem FpNP -complete; the reduction is essentially
the same as that in the proof of Theorem 17.4. Finally, the proof of Theorem
17.5 establishes that this variant of MAX-WEIGHTSATcan be reduced to TSP
COST.0

17.1Optimization Problems 423

The Class pNP[lognj

Many other optimization problems are known to be FpNP-complete: The (full
optimization version of) KNAPSACK,the weighted versions of MAX-CUTand
BISECTIONWIDTH,and so on. Conspicuously absent from this list are problems
whose cost is polynomially large and hence has logarithmically many bits, such
as CLIQUE,UNARYTSP (the TSP with distances written in unary) and the
unweighted versions of MAXSAT,MAX-CUT,and BISECTIONWIDTH.

And there is a reason for this. Consider for example the problem

CLIQUESIZE:Given a graph, determine the size of its largest clique.

The binary search algorithm that proves that CLIQUESIZE is in FpNP asks
only logarithmically manyadaptive NP queries -the exact value that must be
determined is between one and n, the number of nodes of the givengraph, and so
binary search takes logn queries to converge to the true value. Alternatively,
we can think of an oracle algorithm for CLIQUESIZEthat asks polynomially
many queries (i.e., whether the'rnaxirnum clique is larger than k, for all values
of k from 1 to n); but the queries here are not adaptive, they do not depend
at all on the answers of previous queries. In either case, the oracle algorithm
for CLIQUESIZEdoes not make full use of the polynomially many adaptive
queries at its disposal (we later show that, quite remarkably, these two kinds
of restrictions lead to the same class). Hence, CLIQUESIZE, and the other
optimization problems with polynomially large cost, must belong in a weaker
complexity class.

And they do. Let us define pNP[lognj to be the the class of all languages
decided by a polynomial-time oracle machine which on input x asks a total of
O(log Ixi) SATqueries. FpNP[log n] is the corresponding class of functions.
Theorem 17.6: CLIQUESIZEis FpNP[lognLcomplete.

Proof: The proof mimics our argument that led to the FpNP -completeness of
TSP. We first show that the problem MAXOUTPUT[log~, the version of MAX
OUTPUTin which the output has logn, not n, bits, is FP P[lognLcomplete; the
proof is completely analogous to that of Theorem 17.3. We then reduce MAX
OUTPUT[lognJ to MAXSATSIZE(the version ofMAXSATin which the maximum
number of satisfied clauses is sought). The idea here is that, since the output
of the machine has logarithmically many bits, the weights needed in the proof
of Theorem 17.4 are polynomial in n, and hence they can be simulated by
multiple copies of the same clause. Finally, MAXSATSIZEis reduced to CLIQUE
SIZEby the usual reduction (via INDEPENDENTSET,recall Theorem 9.4 and its
corollaries}.0

Similarly, the other optimization problems with polynomial-size cost men
tioned above can be shown FpNP[lognLcomplete.

But what about the other restriction on FpNP, in which the oracle machine

I
i
1:

I
I'
I,
!

424 Chapter 17: THE POLYNOMIALHIERARCHY

must decide which queries to ask non-adaptively, before it knows the answer to
any query? Define pfP (for an oracle machine that asks its queries in parallel,
that is) to be the class of all languages that can be decided by an oracle machine
operating as follows: On input x, the machine computes in polynomial time a
polynomial number of instances of SAT (or any other problem in NP), and
receives the correct answers. Based on these answers, the machine decides
whether x E L in polynomial time.
Theorem 17.7: pfP = pNP[logn].

Proof: To show that pNP[logn] c:::; pfP, consider a machine that uses at most
O(logn) adaptive NP queries. When the first query is asked, there are two
.possibilities, one for each possible answer. For each of these two .possibilities
there is a next query to be asked, and two possible answers for each. It is easy
to see that overall there are 2klogn= O(nk) queries that can be possibly asked
during the computation. To simulate this machine by a non-adaptive oracle
machine, we first compute all O(nk) possible queries, find the answers to all of
them, and from that we easily determine the correct path to be followed and
answer given.

For the other direction, suppose that we have a language decidable by
polynomially many non-adaptive SAT queries. We can decide this language with
logarithmically many adaptive NP queries, as follows: First, in O(logn) NP
queries we determine (by binary search) the precise number of 'yes" answers to
the non-adaptive queries. Notice that each question in this binary search, asking
whether the given set of Boolean expressions has satisfying truth assignments
for at least k of them, is itself an NP query--the k satisfying truth assignments,
together with an indication of which expression is satisfied by each, comprise
an adequate certificate. Once the exact number k of "yes" answers is known,
we ask the last query: "Do there exist k satisfying truth assignments for k of
the expressions such that, if all other expressions were unsatisfiable (which we
know they must be...) the oracle machine would end up accepting?" 0

17.2 THE POLYNOMIALHIERARCHY

Now that we have defined pNP we find ourselves in a familiar position: We
have defined an important deterministic complexity class (it is deterministic,
since the oracle machines in terms of which it is defined are deterministic), and
we are tempted to consider the corresponding nondeterministic cless, NpNP
Naturally, this class most likely will not be closed under complement, and hence
we should also consider oracle machines that use that class. And so on:

Definition 17.2: The polynomial hierarchy is the following sequence of
classes: First, tloP = I:oP = IIoP = P; and for all i 2: 0

17.2The PolynomialHierarchy 425

tlH1P = pEiP
I:i+IP = NpEiP
IIi+IP = coNpE,P.

We also define the cumulative polynomial hierarchy to be the class PH =
U2':OEiP.D

Since EoP = P does not help polynomial-time oracle machines the first
level of this hierarchy makes up OUrfamiliar important complexity classes:
tllP = P, EIP = NP, IIIP = coNP. The second level starts with the class
tl2P = pNP studied in the previous section, and continues with E2P = NpNP

d i I . NP . 'an Its co~p ement II2P = coNP . As With the first level, there is every rea-
son to believe that all three classes are distinct. The same holds for the third
level, and so on. Naturally, the three classes at each level are related by the
same inclusions that we know about 'P, NP, and coNP. Also, each class at
each level includes all classes at previous levels.

In order to show that a problem is in NP we are more likely to argue in
terms of "certificates" or "witnesses," rather than in terms of nondeterministic
Turing machines. We have found it simple "andconvenient to use the character
ization of NP in terms of polynomially bal~nced relations (Proposition 9.1). In
t~e p?~yn~mia.lhierarchy with its complex recursive definition such conceptual
simplification ISeven more welcome, almost essential. We prove below a direct
generalization of Proposition 9.1 for the polynomial hierarchy.
!heorem 1!.8: Let L be a language, and i 2: 1. L E EiP if and only if there
~s~ polynomially balanced relation R such that the language {x; y : (x, y) E R}
ISIII IIi-iP and

L = {x: there is a y such that (x,y) E R}.

Proof: By induction on i. For i = 1, the statement is exactly Proposition
9.1. So suppose that i > 1, and such a relation R exists. We must show that
L E L:iP. That is, we must describe a nondeterministic polynomial-time oracle
machine, with ~ l.an.guagei~ L:i-1P as an oracle, that decides L. This is easy:
The nondeterministic machme on input x simply guesses an appropriate y, and
asks a Ei-IP oracle whether (x, y) E R (more correctly, since R is a IIi-IP
relation, whether (x,y) f/_ R).

?onvers~ly, suppose that L E L:iP. We must show that an appropriate
relation R exists, What we know is that L can be decided by a polynomial-time
n?ndeterministic Turing machine M? using as an oracle a language K E L:i-IP.
Smce K E L:i-IP, by induction there is a relation S recognizable in IIi-2P such
that z E K if and only if there is a w with (z, w) E S.

Wemust describe a polynomially balanced, polynomially decidable relation
R for L; that is, a succinct certificate for each x E L. Weknow that x E L if and
only if there is a correct, accepting computation of MK on x. The certificate

where the ith quantifier Q is "for all" if i is even, and "there is" if i is odd.

426 Chapter 17: THE POLYNOMIAL HIERARCHY

of x will be a string Y recording such a computation of MK (compare with
the proof of Proposition 9.1). But recall that MK is now an oracle machine
with an oracle K E I:i-IP, and thus several of its steps will be queries to K.
Some of these steps will have "yes" answers, and some "no" answers. For each
"yes" query Zi, our certificate Y also includes Zi'S own certificate Wi such that
(Zi, Wi) E S. This is the definition of R: (x, y) E R if and only if y records an
accepting computation ofM? on x, together with a certificate Wi for each "yes"
query Zi in the computation.

We claim that checking whether (x, y) E R can be done in IIi-IP. First,
we must check whether all steps of M? are legal; but this can be done in
deterministic polynomial time. Then we must check for polynomially many
.pairs (Zi,Wi) whether (Zi,Wi) E S; but this can be done in IIi-2;p, and thus
certainly in IIi-IP. Finally, for all "no" queries z~we must check that indeed
Z; 1. K. But since K E I:i-IP, this is another IIi-IP question. Thus (x, y) E R
if and only if several IIi-IP queries all have answers "yes;" and it is easy to see
that. this can be done in a single IIi-IP computation. 0

The "dual" result for IIiP is this:

Corollary 1: Let L be a language, and i ;:::1. L E IIiP if and only if there is
a polynomially balanced binary R such that the language {x;y: (x,y) E R} is
in I:i-IP and

L = {x: for all y with Iyl ::; Ixl\ (x,y) E R}.

Proof: Just recall that IIiP is precisely coI:iP. 0
Notice that in the description of L in Corollary 1 we must explicitly state

for the universally quantified string y the bound Iyl ::; Ixlk. Since R is known
to be polynomially balanced, this constraint is, in this context, superfluous,
and will be omitted. Also, we shall use quantifiers such as \Ix and ::Iyin the
descriptions of languages such as the one displayed in Corollary 2 below. This
will help bring out the elegant mathematical structure of these descriptions, as
well as their affinity with logic.

In order to get rid of the recursion in Theorem 17.8, let us call a relation
R <;;; (E*)i+1 polynomially balanced if, whenever (z ,YI,... ,Vi) E R, we have
that IYII,.. ·, IYil::; Ixlk for some k.
Corollary 2: Let L be a language, and i ;:::1. L E EiP if and only if there is
a polynomially balanced, polynomial-time decidable (i+ 1)-ary relation R such
that

L = {x : ::IYI\lY2::1Y3 ... QYi such that (z, YI,... ,Yi) E R}

17.2 The Polynomial Hierarchy 427

Proof: Repeatedly replace languages in IIjP or EjP by their certificate forms
as in Theorem 17.8 and its Corollary 1.0

Using these characterizations we can prove the basic fact concerning the
polynomial hierarchy: As it is built by patiently adding layer after layer, always
using the previous layer as an oracle for defining the next, the resulting struc
ture is extremely fragile and delicate. Any jitter, at any level, has disastrous
consequences further up:

Theorem 17.9: If for some i ;:::1 I:iP = IIiP, then for all j > i EjP = IIjP =
~jP =EiP.
Proof: It suffices to show that I:iP = IIiP implies I:i+IP = I:iP. So, consider
a language L E I:i+IP. By Theorem 17.8 there is a relation R in IIiP with
L = {x: there is a Y such that (x,y) E R} . But since IIiP = I:iP, R is in
EiP. That is, (.T, y) E R if and only if there is a Z such that (x, y, z) E S for
some relation S E IIi-IP. Thus x E L if and only if there is a string y; Z such
that (x, y, z) E 8, where S E IIi-IP. But this means that L E EiP. 0

The statements of many results in complexity theory end like that of The
orem 17.9: "then for all j > i EjP = IIjP = ~jP = EiP." This conclusion is
usually abbreviated "then the polynomial hierarchy collapses to the ith level."
For example:

Corollary: If P = NP, or even if NP = coNP, the polynomial hierarchy
collapses to the first level.0

The last corollary makes one thing abundantly clear: In the absence of a
proof that P =f. NP, there is no hope of proving that the polynomial "hierarchy"
is indeed a hierarchy of classes each properly containing the next (although,
once again, we strongly believe that it is). Still, the polynomial hierarchy is
interesting for several reasons. First it is the polynomial analog of an important
(provable) hierarchy of "more and more undecidable problems," the arithmetic
or Kleene hierarchy (recall Problem 3.4.9). Second, its various levelsdo contain
some, even though not very many, interesting and natural problems; some of
them are complete. For example, consider the followingdecision problem:
MINIMUM CIRCUIT: Given a Boolean circuit C, is it true that there is no circuit
with fewer gates that computes the same Boolean function?

MINIMUM CIRCUIT is in II2P, and not known to be in any class below that.
To see that it is in II2P, notice that C is a "yes" instance if and only if for all
circuits C' with fewer gates there is an input x for which C(x) =f. C'(x). Then
use Corollary 2, noting that the last inequality can be checked in polynomial
time.

It is open whether MINIMUM CIRCUIT is II2P-complete. Fortunately, and
as usual, for every i ;:::1 there is a version of satisfiability very appropriate for
the corresponding level of the hierarchy:

428 Chapter 17: THE POLYNOMIAL HIERARCHY

QSATi(for quantified satisfiability with i alterna~i~ns of.qua~tifiers): Given a
Boolean expression ¢, with Boolean variables partitioned mto ~sets Xl," ., Xi,
is it true that for all partial truth assignments for the variables in X I t~ere is a
partial truth assignment for the variables in X2 such that fo: all ~artlal truth
assignments for the variables in X3, and so on up to Xi, ¢ IS satisfied by the
overall truth assignment? We represent an instance of QSATias follows (by
slightly abusing our first-order quantifiers):

where, as usual, the quantifier Q is :l if i is odd and V if i is even.
Theorem 17.10: For all i ~1 QSATiis 2:iP-complete.
Proof: Both directions rest heavily on Theorem 17.8 and its Corollary 2. To
show that QSATiE 2:iP we just note that it is defined in the form required by
Corollary 2.

To reduce any language L E 2:iP to QSATi,we first bring L in the form of
Corollary 2 to Theorem 17.8. Since the relation R can be decided in polynomial
time, there is a polynomial-time deterministic Turing machine M that accepts
precisely those input strings x; YI; ... ; Yi such that (x, YI, ... ,Yi) E R. Suppose
that i is odd (the even i case is symmetric). Using Cook's theorem (and :hus
not even taking advantage of the fact that M is deterministic) we can w:lte a
Boolean formula e that captures the computation of this machine. The vanables
in ¢ can be divided into i + 2 classes. Variable set X contains the variables
standing for the symbols in the input string before the first ";" symbol-recall
that the input of I'll is of the form x; YI; ... ; Yi. Similarly, variable set Y1stands
for the next input symbols, and so on up to Y;. These i+ 1 sets are called
the input variables. Finally, there is a (probably much larger). set of Boolean
variables Z that incorporates all other aspects of the computation of !II. .

Now, given any fixed values for the variables in X, ~l"'" Yi, .the resultlIl~
expression is satisfiable if and only if the values of the mput van abies spell a
string in the language decided by M, that is, if they are related by.R.

Consider now any string x, and substitute in ¢ the correspondmg Boolean
values ,Y for X. We know that x E L if and only if there is a Yl such that for ~ll
Y2 etc., there is a Yi (remember, i is odd) such that R(x, Yl,"" Yi)' B,!t this,
in terms of the expression ¢, means that for these particular values X there
are values for Y1 such that for all values of Y2 etc., there is a value for Yi an~.
there is a value of Z, such that <p evaluates to true. Thus x E L if and only If
:lY1VY2 •.. :lY;; Z¢(X), which is an instance of QSATi·0

How about the cumulative hierarchy PH, does it have complete sets? It
turns out that it probably does not. This is not because PH is a "semantic
class"-it is not. The reason is a little more subtle (compare with Problem
8.4.2).

17.2The PolynomialHierarchy 429

Theorem 17.11: If there is a PH-complete problem, then the polynomial
hierarchy collapses to some finite level.
Proof: Suppose that L is PH-complete. Since L E PH, there is an i ~0
such that L E 2:iP. But any language L' E 2:i+lP reduces to L. Since all
levelsofthe polynomial hierarchy are closed under reductions, this means that
L' E 2:iP, and hence 2:iP = 2:i+lP. 0

There is a rather obvious upper bound on the power of the polynomial hier
archy: Polynomial space. Indeed, starting fron the characterization in Corollary
2 of Theorem 17.8, it is easy to see that the search for the strings YI, Y2, ... , Yi
can comfortably fit within polynomial space. In fact, in the next chapter we
shall see that PSPACE is in some sense a generalization and extension of the
polynomial hierarchy.
Proposition 17.1: PH ~ PSPACE. 0

But is PH = PSPACE? This is an open and intriguing question. However
notice this curious fact: IfPH = PSPACE then by Theorem 17.11PH has com
plete problems (PSPACE has), and thus the polynomial hierarchy collapses.
Although the PH = PSPACE eventuality would seem to be "stretching" the
polynomial hierarchy upwards, and therefore to strengthen it, in fact it does
the opposite. Finally, PH has a very natural logical characterization (arguably
more natural than Fagin's theorem, see Problem 17.3.10).

BPP and Polynomial Circuits

When studying BPP in Section 11.2 we noted that it is not known to be con
tained in NP (or coNP; since BPP is closed under complementation, it is a
subset of both or neither). We can now show by a probabilistic technique that
it is in the second level of the polynomial hierarchy:
Theorem 17.12: BPP < 2:2P.
Proof: Let L E BPP. All we know about L is that there is a precise Turing
machine M, with computations of length p(n) on inputs of length n, that de
cides L by clear majority. For each input x of length n, let A(x) ~ {O,I}p(n)
denote the set of accepting computations (the choices that lead to "yes.") We
can assume that if x E L then IA(x)1 ~ 2P(n)(1 - 2~)' and if x rf- L then
IA(x)1 :::::2p(n)2~' That is, the probability of a false answer (false positive or
false negative) is at most 2~' instead of the usual i. This can be assured by
repeating the BPP algorithm enough times and taking the majority outcome
(recall the discussion in Section 11.3).

Let U be the set of all bit strings of length p(n). For a, b E U define
a EBb to be the bit string which is the componentwise exclusive or of the two
bit strings. For example, 1001001EB0100101= 1101100. This operation has
some very useful properties. First, a EBb = c if and only if c EBb = a. That

430 Chapter17: THE POLYNOMIAL HIERARCHY

is, the function "EBb"applied to a twice gets us back to a. As a result, the
function "EBb"is one-to-one (because its argument can be recovered). Second,
if a is a fixed string and r a random string, drawn by flipping an unbiased coin
independently p(n) times, then rEBa is also a random bit string. This is because
"EBa" is a permutation of U, and thus does not affect the uniform distribution.

Let t be a bit string oflength p(n), and consider the set A(x) EBt = {a EBt :
a E A(x)}. We call this set the translation of A(x) by t. Since the function EBtis
one-to-one, the translation of A(x) has the same cardinality as A(x). We shall
prove the following intuitive fact: If x E L, since A(x) is so large in this case,
we can find a relatively small set of translations that covers all of U. However,
if x f/. L, then A(x) is so small that no such set of translations can exist.

More formally, suppose that x E L, and consider a random sequence of.
p(n) translations, tl ... , tp(n) E U; they are obtained by drawing p(n)2 bits
independently with probability e. Fix a string b E U. We say that these
translations cover b if b « A(x) EBtj for some j :::;p(n). What is the probability
that a point b is·covered? s e A(x) EBtj if and only if b EBtj E A(x). And since
bEBtj is as random as tj, and we have assumed that x E L, we conclude that
prob[b f/. A(x) EBtjl = 2ln. Therefore, the probability that b is not covered by
any tj is precisely that number raised to p(n), 2-np(n).

So, every point in U fails to be covered with probability 2-np(n); it follows
that the probability that there is a point that is not covered is at most 2-np(n)
times the cardinality of U, or 2-(n-l)p(n) < 1. Thus, a sequence of randomly
drawn translations T = (tl, ... , tp(n») has a positive (in fact, overwhelming)
probability that it covers all of U. We must conclude that there is at least one
T that covers all of U.

Conversely, suppose that x f/. L. Then the cardinality of A(x) is an expo
nentially small fraction of that of U, and obviously (for large enough n) there is
no sequence T of p(n) translations that cover all of U. We conclude that there
is a sequence T of p(n) translations that cover U if and only if x E L.

The proof that L E E2P now follows easily from Corollary 2 of Theorem
17.8: We have shown that L can be written as

L = {x: there is aTE {O, l}p(n)2 such that for all bE U
there is a j :::;p(n) such that b EBtj E A(x)}.

But this is precisely the form of languages in E2P according to the ,corollary.
The last existential quantifier "there is a j such that ... " does not affect the
position of L in the polynomial hierarchy: It quantifies over polynomially many
possibilities, and is therefore an "or" in disguise. To put it otherwise, the whole
line "there is a j :::;p(n) such that bEBtj E A(x)" can be tested in polynomial
time by trying all tj's. 0

17.2The PolynomialHierarchy 431

Since BPP is closed under complement, we have in fact proved:
Corollary: BPP ~ E2P nIhP. 0

We conclude our discussion of the polynomial hierarchy by an interesti
~,esult.~lated t,? circuit complexity. In Section 14.4 we articulated an importa:~
Conjecture B that strengthens P =1= NP, namely that SAT (or any other NP

complete problem) h~ ~?polynomial circuits (uniform or not). The following
result adds much credibility to the conjecture:

Theorem 17.13: IfSAT has polynomial circuits, then the polynomial hierarchy
collapses to the second level.

Proof: The proof is a nice application of the self-reducibility of SAT (recall the
?roof of Theorems 13.2 and 14.3). That SAT is self-reducible means that there
IS a P?lynomial.-time algorithm for SAT that invokes SAT on smaller instances.
That IS, there IS a polynomial-time oracle machine MSAT deciding SAT with
SA~ as an orac~e, only with the additional restriction that, on input of length
n, Its oracle strmg can contain at most n - 1 symbols. .

.The proof rests on an important consequence of self-reducibility, Self
testing. Suppose that there is a family of polynomial circuits C = (C C)
deciding S~T. In the ~roof we shall allow for the self-reducibility machi~~ liSAT
to us~ as I~SoraclE~,~nstead of SAT, an initial segment Cn = (Co, C1, ... , Cn)
of Jhl.S Iemily. That IS, once a query appears in its query string, the machine
M n mvokes not SAT, but the appropriate circuit in the segment assuming that
the length of the query is at most n (and we know that the queries of M have
small length). We say that the initial segment Cn self-tests if for all Boolean
expressions w of size up to n

That is, all Boolean expressions w fed into the appropriate circuit give the same
answ~r ~ when they are the input of the self-reducibility machine for SAT, with
the circuit segment as oracle. If the self-testing equality holds for all w this
means (by induction of the size of w) that Cn is indeed a correct initial segment
of a circuit family for SAT.

On the assumption that SAT has polynomial circuits we must show that
EjP = E2P for all j. By Theorem 17.9 we need only show that E P = E PS . 3 2·
0, we are given an L E E3P and we have to show it is in E2P. We can assume

that L is of this form:

L = {x: 3yVz(x,y,z) E R},

wh~re R is a polynomially balanced relation decidable in NP-this is a simple
van~nt o~ Corol.lary ~ to T~eorem 17.8, with the recursion stopped one step
earher. Slllce R IS deCidable III NP and SAT is NP-complete, there is a reduction

.,

432 Chapter 17: THE POLYNOMIAL HIERARCHY

F such that (x, y, z) E R if and only if the Boolean expression F(x, y, z) is
satisfiable. Suppose that, on input x, the largest expression F(x, y, z) that can
be constructed is of length at most p(lxl). Since R is polynomially balanced
and F polynomial-time, pen) is a polynomial. .

To show that L is in ~2P, we shall argue that x E L if and only if the
following holds:
There exists an initial segment Cp(I"'!) and there exists a string y such that for all
strings z and expressions w-all of length at most p(lxl)-we have: (a) Cp(lxl)
self-tests successfully on w, that is, MCn(w) = Cn(w), and (b) Cp(lx!) outputs
true on expression F(x,y,z).
Notice that, since the above condition involves two alternations of quantifiers,
and the innermost property can be tested in polynomial time, this would settle
that L E ~2P,

If the above condition holds, then by (a) we know that Cp(lxl) is a correct
initial segment of a circuit.family for SAT, and thus it can be used to correctly es
tablish in (b) that R(~, y, z), and thus the condition implies x E L. Conversely,
if x E L then there is a y such that for all z R(x,y,z). Furthermore, by our
hypothesis that SAT has polynomial circuits, we know that a correct segment
exists that will self-test. The same segment will then certify that (x, y, z) E R
for the appropriate y and z, The proof is complete. 0

17.3 Notes, References, and Problems 433

17.3NOTES, REFERENCES,AND PROBLEMS

17.3.1 Class review:

The class OP was introduced in

o C. H. Papadimitriou and M. Yannakakis "The complexity of facets (and some
facets of complexity)," Proc. 24th ACM .s_ymp.on the Theory of Computing,
pp. 229-234, 1982; also, J.CSS 28, pp. 244-259, 1984.

Many OP-completeness results can be found in this paper, and also in

o C. H. Papadimitriou and D. Wolfe "The complexity of facets resolved," Proc. 16th
IEEE Symp. on the Foundations of Computer Science, pp. 74-78, 1985; also,
J.CSS 37, pp. 2-13, 1987.

As for UNIQUE SAT, there is an oracle under which it is not OP-complete, and so it
appears to be a less worthy representative of OP than the other problems we have
seen:

o A. Blass and Y. Gurevich "On the unique satisfiability problem," Information
and Control, 55, pp. 80-88, 1982.

But see Problem 18.3.5 in this regard.
The "D" in OP stands for "difference": A language in OP is just the set-theoretic

difference of two languages in NP. The corresponding class of differences of two
recursively enumerable languageswas defined in

o H. Rogers Theory of Recursive FUnctions and Effective Computability, MIT
Press, Cambridge, Massachusetts, 1987 (second edition).

I

'I'

r--

434 Chapter 17: THE POLYNOMIAL HIERARCHY

Incidentally, the class that we call DP is denoted in the liter~ture as DP. We have
adopted this new notation, as well as that for th~ polynomi.al hierarchy, whose classes

I ally denoted I:P etc. in order to arnve at a uniform nomenclature for allare a so usu 2' fix i . d. .
classes "between" P and PSPACE: All names end with P, and the pre IS III icative
of the mode of computation involved.

17.3.2 Problem: (a) Show that the problems CRITICAL SAT, CRITICAL HAMIL
TON PATH, and CRITICAL 3-COLORABILITYare in DP.
(b) Show that UNIQUESAT is in DP.
(c) Show that if UNIQUE SAT is in NP then NP = coNP.

17.3.3 Problem: Show that DP <:::: PP.

17.3.4 'I'rue or false? (Or equivalent to P =NP?) , .
(a) If L is NP-complete and L' is coNP-complete, then L nL IS DP-complete.
(b) If L is NP-complete LnL is DP-complete.

17.3.5 DP can be extended to classes in which an arbitrary bounded num~er of SAT
queries are allowed. The resulting Boolean hierarchy, somewhat sparse III natural
complete problems, was studied in

J -Y C . T Gundermann J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wag-
o . . adl'G.·Wechsung "T'he Boolean hierarchy I: Structural properties" SIAMner, an vV' • . • 1 18

Journal on Computing 17, pp. 1232-1252,1988. Part II: Applications III va. ,
pp. 95-111, 1989.

17.3.6 Show that the following language is .6.2P-complete: Gi:en ~n instance of the
TSP, is the optimum tour length odd? Is the optimum tour unique,

17.3.7 The relationship between FpNP and optimization problems (Theorems 17.5
and 17.6), hinted at in

o C. H. Papadimitriou "The complexity of unique solutions," Proc. 23rd IEEE
Symp. on the Foundations of Computer Science, pp. , pp. 14-20, 1983; also
J.ACM 31, pp. 492-500, 1984,

was established in
o M. W. Krentel "The complexity of optimization problems," Proc. 18th ACM

Symp. on the Theory of Computing, pp. 79-86, 1986; also J.CSS 36, pp. 490-
509, 1988.

Theorem 17.7 is from

S R B d L Hay "On truth-table reducibility to SAT and the difference hi-o . . uss an . 4
crarchy over NP," Proc. 3rd Symp. all Structure in Complexity Theory, pp. 22 -
233, 1988.

17.3.8 Problem: Show that, if NP <:::: TIME(n1ogn), then PH <:::: TIME(n10gk n).

17.3.9 The polynomial hierarchy was introduced and studied in
o L. J. Stockmeyer "The polynomial hierarchy," Theor. Camp. Science, 3, pp. 1-22,

1976.

17.3 Notes, References, and Problems 435 .,
Theorem 17.10 on the completeness of QSATi is from

o C. Wrathall "Complete sets for the polynomial hierarchy," Theor. Camp. Science,
3, pp. 23-34, 1976.

11.3.10 Show that PH is the class of all graph-theoretic properties that can be
expressed in second-order logic. (Compare with Theorem 8.3.)

17.3.11 Suppose that the cities in a Euclidean instance of the TSP are the vertices of
a convex polygon. Then not only is the optimum tour easy to find (it is the perimeter
of the polygon), but the instance has the master tour property: There is a tour such
that the optimum tour of any subset of cities is obtained by simply omitting from the
master tour the cities not in the subset.

Problem: Show that deciding whether a given instance of the TSP has the master
tour property is in I:2P.

17.3.12 We know that converting Boolean expressions in disjunctive normal form
to conjunctive normal form can be exponential in the worst case, simply because the
output may be exponentially long in the input. But suppose the output is small.
In particular, consider the following problem: We are given a Boolean expression in
disjunctive normal form, and an integer B. We are asked whether the conjunctive
normalform has B or fewer clauses.

Problem: Show that the problem is in I:2P.

Incidentally, the previous two problems are two good candidates for natural I:2P
complete problems.

17.3.13 Default logic. A default is an object of the form {j = p'~&x, where ¢,
x, and 'Ij; are Boolean expressions in conjunctive normal form called the prerequisite,
the justification, and the consequence of ti, respectively. Intuitively, the above default
means that if ¢ has been established, and neither ..,'Ij; nor "'X have been established,
then we can "assume X by default." For example, here is the intended use of this
device in artificial intelligence:

bird(Tweety) : .., penguin(Tweety)&flies(Tweety)
flies(Tweety)

A default theory is a pair D = (ao, .6.), where ao is a Boolean expression (intuitively,
comprising our initial knowledge of the world), and .6. is a set of defaults.

The semantics of a default theory is defined in terms of a peculiar kind of model
called an extension. Given a default theory (ao, .6.), an extension of (ao,.6.) is an
expression a such that the following sequence of expressions in conjunctive normal
form, starting from oo, converges to a:
ai+1 = 8(ai U {X : for some default ,p'~&xE .6.,

ai =} ¢ and a ~ ..,('Ij; 1\ X)}).
Here 8(¢) denotes the deductive closure, that is, all clauses deducible from ¢. That
is, at each stage we add to ai all default consequences whose prerequisites have been
established already, and whose justifications and consequences do not contradict the

436 Chapter 17: THE POLYNOMIAL HIERARCHY

extension sought; we then take all possible logical consequences of the resulting ex
pression. Notice that the sought extension O! appears in the iteration. Obviously this
process must converge after IAI or fewer steps, but not necessarily to o; if not, O!

fails to be an extension. Default theories may have one, many, or no extensions. Let
DEFAULTSAT be the following problem: "Given a default theory, does it have an
extension?"
(a) Show that DEFAULTSAT is ~2P-complete.
(b) Consider the special case of DEFAULTSAT in which all defaults are of the form
~, where z and y are literals. Show that DEFAULT SAT in this special case is
NP-complete.
Default logic was proposed and studied by Ray Reiter

o R. Reiter "A logic for default reasoning," Artificial Intelligence 13, 1980.

It is one of the many formalisms representing attempts in artificial intelligence to
capture the elusive notion of common-sense reasoning, see for example

o M. Genesareth and N. Nilsson Logical Foundations of Artificial Intelligence,
Morgan-Kaufman, San Mateo, California, 1988.

The complexity results in parts (a) and (b) above are from
o C. H. Papadimitriou and M. Sideri "On finding extensions of default theories,"
Proc. International Conference in Database Theory, pp. 276-·281,Lecture Notes
in Computer Science, Springer-Verlag, 1992.

A very comprehensive complexity-theoretic treatment of this and other formalizations
of common-sense reasoning, resulting in several natural problems complete for various
levels of the polynomial hierarchy, is contained in

o G. Gottlob "Complexity results in non-monotonic logics," CD-TR 91/24, T. U.
Wien, August 1991. Also, J. of Logic and Computation, June 1992.

17.3.14 There are now oracles known with respect to which PH # PSPACE and the
polynomial hierarchy is infinite, separated from PSPACE, or collapses to any desired
level, see

o A. C.-C. Yao "Separating the polynomial hierarchy by oracles," Proc. 26th IEEE
Symp. on the Foundations of Computer Science, pp. 1-10, 1985, also

oJ. Hastad Computational Limitations for Small-depth Circuits, MIT Press, Cam
bridge, 1987, and

o K.-l. Ko "Relativized polynomial-time hierarchies with exactly k levels" SIAM
J. Computing, 18, pp. 392-408, 1989.

Both questions had been open for some time. In fact, separation from P~PACE is
known to hold for a random oracle

o J.-Y. Cai "With probability one, a random oracle separates PSPACE from the
polynomial hierarchy," Proc. 18th ACM Symp. on the Theory of Computing,
pp. 21·-29, 1986j also, J.CSS, 38, pp. 68-85, 1988.

I
I

'J,

17.3.15 A weaker form of Theorem 17.12 was announced in

17.3 Notes, References, and Problems 437

o M. Sipser "A complexity theoretic approach to randomness" Proc. 15th ACM
Symp. on the Theory of Computing, pp. 330--335, 1983. '

Our proof is from

o ~98~~utemann "BPP and the polynomial time hierarchy," IPL 17, pp. 215-218,

Theorem 13.13 is form

o R. M. Karp and R. J. Lipton "Some connections between nonuniform and uni
form complexity classes," Proc. 12th ACM Symp. on the Theory of Computin
pp. 302-309, 1980j retitled "Turing machines that take advice" Enseign M thg,
28, pp. 191-201, 1982, ' . a .,

where its current strong form is attributed to Mike Sipser,

r

I
I.

---_. ----==:;_---

'""'"20 .,
A GLIMPSE BEYOND

In this chapter we shall see at last some truly, provably intmctable problems ...

20.1 EXPONENTIAL TIME

Recall our definition of exponential time

•EXP = TIME(2n),

and the corresponding nondeterministic class

k
NEXP = NTIME(2n).

? • ? .
The counterpart of P == NP at this level is the EXP == NEXP question -
unfortunately, we are not any closer to resolving it. However,there is something
simple that can be said about the relation between these two problems:
Theorem 20.1: IfP = NP then EXP = NEXP.

Proof: Let L E NEXP; under the assumption that P = NP, we shall show
that it is in EXP. By definition, L is decided by a nondeterministic Thring
machine N in time 2n', for somek. Consider now the "exponentially padded
version" of L:

Ixl' I IL'={xn2 -x :XEL}.

That is, L' consists of all strings x in L padded by enough "quasiblanks" to
bring the total length of the string to 2lxlk.

We claim that L' E NP. This is easy to show: The polynomial-time
nondeterministic machine that decides L' is precisely N, slightly modified so

491

!.
i ,

492 Chapter 20: A GLIMPSEBEYOND

that it first checks whether its string ends in exponentially many quasiblanks;
if not, it rejects, otherwise it simulates N, treating quasiblanks as blanks. The
machine works in polynomial time simply because its input is exponentially
long.

Since L' ENP, and we are assuming that P = NP, we know that L' E P.
Thus there is a deterministic TUringmachine M' that decides L' in time nl, say.
We can in fact assume that M' is a machine with input and output, so that it
never writes on its input string. We shall now invert the previous constructione
to get a deterministic machine M that decides L in time 2n , for some integer
£ thus completing the proof. But this is easy to do: M on input x simply
, k

simulates M' on input xn21xl -Ixl. The only difficulty, tracking down M"s
input cursor when it wanders off in the Fl's, can be solved by maintaining the
position of the input cursor as an integer in binary. 0

Contrapositively, if EXP =I NEXP then P =I NP. That is, class equality
propagates upwards, while class inequality propagates downwards. In other
words, showing that EXP =I NEXP, as we fully believe is the case, might turn
out to be even harder than showing P =I NP; conceivably P =I Np and still
EXP =NEXP (see the references).

This can be generalized, of course (for a proof, see Problem 20.2.3):
Corollary: If f(n) and g(n) ::::n are proper functions, then TIME(J(n)) =
NTIME(f(n)) implies TIME(g(f(n))) = NTIME(g(f(n))). 0

Also, for the analog of Theorem 20.1 in space complexity, as well as for the
interaction between time and space complexity see Problem 20.2.4.

It is interesting to compare EXP and NEXP with two other classes that
capture a more benign aspect of exponential time:

E = TIME(kn), and NE = NTIME(kn).

That is the time bounds in these classes have linear, not polynomial, exponent.
The main drawback of these classes is that they are not closed under reductions
(recall Problem 7.4.4). Still, they are closely related to EXP and NEXP:
Lemma 20.1: For any language L in NEXP there is a language L' in NE such
that L reduces to L'.
Proof: : Just notice that, if L E TIME(2nk), then L' = {xnlxlk : x E L} is in
NE, and L reduces to it. 0

To put it otherwise, NEXP is the closure under reductions of NE.: This
lemma is useful in proving NEXP-completeness results.

Succinct Problems
But what kinds 'ofcomplete problems do these classes have? In the next sU,bsec
tion we shall see some interesting problems from logic that capture this level of

20.1 Exponential Time 493

complexity. Another interesting kind of EXP- and NEXP-complete problems
comes from the consideration that led to Theorem 20.1: NEXP and EXP are
nothing else but P and NP on exponentially more succinct input.

Several NP-complete graph-theoretic problems (including MAX CUT, MAX
FLOW, BISECTION WIDTH, and so on) have important applications to the au
tomated design of VLSI chips. In chip design, however, there are ways of
describing chips that are not explicit and direct, listing all components and
connections of the chip, but succinct and implicit, describing a chip in terms of
repeated patterns and encoded configurations. For a simple example, a highly
regular circuit could be described like this:

"Repeat the (given) component C horizontally and vertically in an N x M grid
(i,j), i = 1, ... ,Nj.) = 1, ... ,M (where N and M are given large integers),
except at the positions i= j, the positions i =2, and the positions i=N - I;
at these positions place the other given component C' ... "

And so on. SinceM and N are given in binary, such descriptions are conceivably
exponentially more sucGinct than the circuits they describe. Accordingly, the
graphs that abstract the structure and operation of such circuits (and for which
we need to solve several computational problems, such as MAX-CUT, BISECTION
WIDTH, and so on) are described in a manner exponentially more succinct than
our usual explicit representation that lists all edges.

We can define a way of representing graphs that captures the effect of such
"hardware description languages." A succinct representation of a graph with
n nodes, where n = 2b is a power of two, is a Boolean circuit C with 2b input
gates. The graph represented by C, denoted Gc, is defined as follows: The
nodes of Gc are {I,2, ... ,n}. And [i,j] is an edge of Gc if and only if C
accepts the binary representations of the b-bit integers i,j as inputs.

The problem SUCCINCT HAMILTON PATH is now this: Given the succinct
representation C of a graph Gc with n nodes, does Gc have a Hamilton path?
Similarly for SUCCINCT MAXCUT, SUCCINCT BISECTION WIDTH, or the succinct
version of any graph-theoretic problem (for these latter problems, as well as for
any graph-theoretic optimization problem, a binary integer budget/goal K is
provided along with C).

We can also define SUCCINCT 3SAT, SUCCINCT CIRCUIT SAT, and SUCCINCT
CIRCUIT VALUE. To encode Boolean circuits, we first assume that all gates are
predecessors to at most two other gates. That is, we think that a gate in the
circuit has four neighbors, of which the first two are predecessors and the other
two successors (if there are fewer neighbors, the missing neighbors are set to
a fictitious gate 0, say). The succinct representation of a Boolean circuit is
another Boolean circuit with many outputs. On input of the form ijk, where i
is a gate number in binary and 0 :::;k :::;3, the output of the encoding circuit is
of the form j; s, where gate j is the kth neighbor of gate i, and s encodes the

494 Chapter 20: A GLIMPSE BEYOND

sort (AND, OR, NOT) of gate i. To encode succinctly a Boolean expression in
conjunctive normal form, we assume that all clauses have three literals and each
literal appears three times (again, with missing literals and clauses represented
as 0). Suppose that the encoded expression has n variables and m clauses. The
encoding circuit on input OJ ij k, where i :S n and k :S 2, returns the index of
the clause where the literal 'Xi appears for the kth time; on input I: ij k it
returns the number of the clause where the literal Xi appears for the kth time;
and on input 2jij k, with i :S m and 1 :S k :S 3, it returns the kth literal of
clause i, It should be clear that all Boolean expressions can be thus encoded.
SUCCINCT 3SAT is now the problem of telling, given a circuit G, whether the
Boolean expression <Pc represented by itt is satisfiable. Similarly for SUCCINCT
CIRCUIT SAT and and SUCCINCT CIRCUIT VALUE.

Theorem 20.2: SUCCINCT CIRCUIT SAT is NEXP-complete.
Proof: It is clear that the problem is in NEXP: A nondeterministic machine
can guess a satisfying truth assignment for all gates It!, ... ,tN], where N is
exponential in the size of the input G, and then verify that the output gate is
true and all gates have legitimate values.

To prove completeness, we shall reduce any language in NEXP to SUC
CINCT CIRCUIT SAT. SO,suppose that L is a language decided by a nondeter
ministic Turing machine N in time 2n (here we use Lemma 20.1). For each
input x we shall construct an instance R(x) of SUCCINCT CIRCUIT SAT. R(x)
is a. circuit, which encodes another circuit GR(x), with the following property:
GR(x) is satisfiable if and only if x E L. The circuit GR(x) is essentially the one
constructed in the proof of Cook's theorem (Theorem 8.2), only exponentially
larger. That is, there are now going to be 2n x 2n copies of the basic circuit G.
The gates of GR(x) will thus be of the form i,j, k, where i,j :S 2n, and k :S IGI,
where G is the size of the basic circuit. R(x) on input i,j, k outputs in binary
sji,j,k'ji,j,k", where S is an encoding of the sort of gate k of G, and k',k"
are the predecessorsof kin G. It is very easy to finish the construction of R(x)
so that it appropriately identifies inputs and outputs of adjacent copies of G,
and forces the upper and lower row and leftmost and rightmost columns of the
computation table to contain the correct symbols (recall Figure 8.3). D

For more discussion of the complexity of problems of this sort see Problem
20.2.9. A proof very similar to that of Theorem 20.2 above establishes the
following:
Corollary 1: The problems SUCCINCT 3SAT and SUCCINCT HAMILTON :PATH
are NEXP-complete.
Proof: It is clear that SUCCINCT CIRCUIT SAT and SUCCINCT 3SAT are in

t If such an expression exists, that is. Most circuits fail to encode a legitimate Boolean
expression for anyone of a long array of possible reasons.

20.1 Exponential Time 495 .,
NEXP. For completeness, the ordinary reduction from CIRCUIT SAT to 3SAT
(recall Example 8.3) can be modified in a straight-forward way to establish
that SUCCINCT CIRCUIT SAT is reducible to SUCCINCT 3SAT. Given a circuit
K encoding some circuit, call it GK, we must construct a circuit R(K) which
encodes an equivalent expression <PR(K)' Expression <PR(K) must have as mMY
variables as GK has gates, and twice as many clauses, with a structure that
directly reflects that of GK. This is quite easy to do; R(K) is essentially K
with some simple pre-processing of the input and post-processing of the output
to conform with the new conventions.

We shall now reduce SUCCINCT 3SAT to SUCCINCT HAMILTON PATH. Given
a circuit G describing a Boolean expression <Pc, we can construct the cir
.cuit R(G) which encodes the graph resulting from our reduction from 3SAT
to HAMILTON PATH (Theorem 9.7). The graph will have three nodes for each
variable corresponding to the choice gadget, recall Figure 9.7), three for each
clause (the nodes of the triangle in the constraint gadget, Figure 9.7), plus
twelve nodes for each occurrence of a literal to a clause (the exclusive-or gad
get): Whether any two such nodes are connected by an edge in the graph can
be easily determined from the indices of the two nodes, plus the occurrence
relation of the Boolean expression, as described by circuit G. Therefore, the
circuit R(G) that encodes the resulting graph can be a.gaindesigned so that it
is Gwith some easy pre-processing and post-processing of indices.D

Corollary 2: SUCCINCT CIRCUIT VALUE is EXP-complete.

Proof: It is clear that it is in EXP. The deterministic version of the proof of
Theorem 20.2 (recall Theorems 8.~ and 8.2) establishes completeness. D

Finally we have the exponential counterpart of Corollary 1 of Theorem
16.5 (which could also be obtained by a "padding argument" like the one used
in the proof of Theorem 20.1):

Corollary 3: EXP coincides with alternating polynomial space.

Proof: SUCCINCT CIRCUIT VALUE is complete for both classes (see Problem
20.2.9(e». D

SUCCINCT 3SAT plays a central role in the study of interactive protocols,
and ultimately of approximability, see 13.4.14 and thereafter.

A Special Case of First-Order Logic

FIRST-ORDER SAT, the problem of telling whether an expression in first-order
logic has a model, is of course undecidable (Corollary 1 to Theorem 6.3). How
ever, there are several interesting "syntactic classes" of expressions for which
this problem is decidable. We shall examine one of them below (see the refer
ences in 20.2.11 for many others).

496 Chapter20: A GLIMPSEBEYOND

An expression in first-order logic is said to be a Schonfinkel-Bernays expres
sion if (a) its alphabet has only relational and constant symbols, no function
symbols, and no equality; and (b) it is of the form

'IjJ = ::IXI ••. ::Ixk\fYl ... \fYe¢, (1)

that is it is in prenex form with a sequence of existential quantifiers followed
by a s~quence bf universal ones. SCHONFINKEL-BERNAYS SAT is this I?roblem:
Given a Schonfinkel-Bernays expression as in equation (1), does it have a model?
Theorem 20.3: SCHONFINKEL-BERNAYS SAT is NEXP-complete.
Proof: We shall first show that it is in NEXP. Consider a Sch6nfinkel-Bernays
expression e as in (1), and suppose that there ate m constants appearing in ¢.
Lemma 20.2: 'IjJ is satisfiable if and only if it has a model with k +m or fewer
elements.
Proof: Suppose that 'IjJ has a model M with a universe U. By the definition
of satisfaction, there are elements Ul, ... ,Uk E U, not necessarilydistinct, such
that MX1=Ul, ... ,Xk=Uk l= \fYl ... \fYe¢· Now let U' be the set {Ul . :., ~k},plus .all
elements of U that are images under M of some constant appearmg m rjJ (notice
that the set U' has at most k +m elements); and let M' be M restricted to U'.
That is, M' has universe U', and maps all constant symbols in the vocabulary
to the same elements of U' as M (notice that the images of constants are by
definition in U'). Finally, a k-tuple of elements of U' is related by relation
symbol R underM' if and only if it is under M.

We claim that M' f= 1jJ. The reason is that, since MX1=Ul, ... ,Xk=Uk l=
\fYl ... \fYe¢, then certainly M~'=Ul"",Xk=Uk l= \fYl ... \fYerjJ,because M and M'
agree on all constant and relation symbols, and deleting elements from the
universe makes a universal sentence even easier to satisfy. 0

That SCHONFINKEL-BERNAYS SAT is in NEXP follows immediately from
this lemma: To verify that an Schi:lnfinkel-Bernays expression is satisfiable, all
we have to do is guess a model with lUI ::::;k +m elements, and verify that
this model satisfies 'IjJ. Let n be the length of the representation of expression
1jJ. Since k + tt: ::::;n, and each relation and function symbol appearing in 1jJ
has arity at most n, the length of the description of the model is O(n2n); and
testing satisfiability can be done in time O(nq), where q is the total number of
quantifiers. We conclude that the problem is in NEXP. . . .

To show completeness, consider a language L decided by a nondeterministic
Turing machine N, with two nondeterministic choices per step, in tiline 2n
(using Lemma 20.1). For each input x we shall constru~t in logarit~mic space
a Schi:lnfinkel-Bernays expression R(x) such that x E L If and only If R(x) has
a model.

The construction is essentially the same as that in the proof of Fagin's
theorem (Theorem 8.3), except in several ways simpler. Now we do not need

20.1 ExponentialTime 497

second-order existential quantifiers, because asking whether a model exists has
the same effect. The arity of the relation symbols Can now depend on n, and
this simplifies matters tremendously.

We have 2n variables Xl, ... , x~, YI, ... , Yn' The whole expression R(x)
consists of the conjunction of all expressions described below, preceded by the
universal quantification of all 2n variables. To simulate the vaiues 0 and i for
the variables, we have a unary relation symbol called 1(.). Intuitively, l{x!)
means that Xl = 1, and ...,l(xt) means that Xl = 0 (we need this trick because
we have no equality in our language).

For k = 1,... ,n we have a 2k-ary predicate Sk(X}"", Xk, Y}"'" Yk) ex
pressing that the y/s spell in binary the successor of the number spelled in
binary by the x/so We can .define S" inductively exactly as in the proof of
Theorem 8.3; and for k = 1, we have SI(X},Yl) ¢} (.l(xt) A l(Yl))'

For each symbol a that can appear on the computation table of N we have
a 2n-ary relation symbol Tu (x, y) (where x stands for x}, .•. ,Xn and y stands
for Y}"'" Yn), expressing that at the xth step (where x is interpreted as a
n-bit binary integer) the yth symbol of N's string is a a, There are two n-ary
relations Co and C}, where Co(x) means that at the xth step nondeterministic
choice 0 was taken, and Cl (x) means that choice 1 was followed. Again we
require that at each step exactly one of the two happens. We also require that
the first row of the table is filled properly by x followed by blanks, and that
the leftmost and rightmost columns contain only I>'S and U's, respectively. For
each quintuple (a,{3, I'C, u) such that, if three consecutive string symbols are
a{31 and choice c is made, then a appears in the next step in the place of (3,
we have an expression that guarantees this, exactly as in the proof of Theorem
8.3. Finally, we require that there be a "yes" in the last row. This concludes
our sketch of the construction of R(x). It is easy to argue that the conjuncts of
R(x) completely axiomatize the intended meaning of the relation symbols, and
thus there is a model for R(x) if and only if~ E L. 0

One last reminder about EXP and NEXP-complete problems: Unlike all
other completeness results in previous chapters in this book, these are problems
that we know are not in P, and therefore provably intractabie according to our
criterion.

,I

II
II
II
Ii
Ii
'I[Ii

II

And Beyond ...

There is no reason to stop at NEXP: Beyond that one finds of course the
exponential hierarchy, with its alternations of quantifiers. It is supposed that,
as in the polynomial case, this hierarchy is indeed an infinite increasing se
quence of classes; however, the same hierarchy starting from the class NE does
collapse (see the references). Then we have exponential space EXPSPACE =
SPACE(2nk); and even further we arrive at doubly exponential time: 2-EXP =

The optimism in this term may seem a little overstated; the term was introduced in the
context of undecidability.

498 Chapter 20: A GLIMPSE BEYOND

k , nk
TIME(22n). Of course there is also 2-NEXP = NTIME(22). If 2-EXP and
2-NEXP were unequal, inequality would propagate down to EXP = NEXP

nk
and finally P = NP. Further up is the class 3-EXP = TIME(222), and so
on.

We have thus an exponential hierarchy-for a change, this time a true,
provable hierarchy, since each of these classes properly includes the previous
one by the time hierarchy theorem. The cumulative complexity class of this
hierarchy is called the class of elementaryt languages. That is, a language is
elementary if it is in the class

for some finite number of exponents. Notice that, in this context,. nondetermin
ism, alternation, space bounds, or the nk in the final exponent are insignificant
details ... As it turns out, there are some fairly natural, decidable problems that
are not even elementary (see Problem 20.2.13).

20.2 Notes, References, and Problems 499 .,
20.2 NOTES, REFERENCES, AND PROBLEMS

20.2.1 Class review:

There is much confusion in the literature regarding the notation for exponential com
plexity classes. For example, EXPTIME has been sometimes used to denote our E
and similarly for nondeterministic classes. '

20.2.2 Oracles are known for which P 10 NP, and still EXP =NEXP, see

o M. L Dekhtyar "On the relativization of deterministic and nondeterministic com
plexity classes," in Mathematical Foundations ofComputer Science, pp. 255-259,
Lecture Notes in Computer Science, vol. 45, Springer Verlag, Berlin, 1976.

Also, oracles are given in this paper that separate EXP from PSPACE. The relation
of these classes with E and NE is also subject to all kinds of relativizations.

20.2.3 Problem: Show that, if f(n) and g(n) ~ n are proper complexity functions,
(a) TIME(f(n» =NTIME(f(n» implies TIME(g(f(n») =NTIME(g(f(n»);
(b) Similarly for space.

500 Chapter 20: A GLIMPSE BEYOND

20.2.4 Problem: Show that, if L = P then PSPACE = EXP.

20.2.5 Problem (the nondeterministic space hierarchy): (a) Show that
NSPACE(n3) i NSPACE(n4). (Use Problem 20.2.3(b) repeatedly, combined with
Savitch's theorem and the space hierarchy theorem.)

(b) More generally, show that NSPACE(f(n)) i NSPACE(fI+"(n)) for any proper
function / 2: logn and € > O.

20.2.6 Theorem 20.1, as well as Problems 7.4.7 and 20.2.5, are from

o O. Ibarra "A note concerning nondeterministic tape complexities," J.ACM, 19,
pp. 608-612, 1972,

o R. V. Book "Comparing complexity classes," J.CSS, 9, pp. 213-229, 1974, and

o R: V. Book "Translational lemmas, polynomial time, and log"n space," 'Theo-
retical Compo Science 1, pp. 215--226, 1976.

20.2.7 Problem: Show that pE = EXP.

20.2.8 Pr~blem: (a) Show that E i NE if and only if there are unary languages i~
NP - P. (Consider the unary version of any language in E (or NE)j show it is in P
(respectively, NP).) This result can be strengthened as follows:

(b) Show that E i NE if and only if there are sparse languages in NP - P. (This is
from

o J. Hartrnanis, V. Sewelson, and N. Immerman "Sparse sets in NP-P: EXPTIME
vs. NEXPTIME," Information and Control, 65, pp. 158-181, 1985.)

That the NE hierarchy collapses was shown in

o L. Hemachandra "The strong exponential hierarchy collapses" J.CSS 39, 3, pp.
299-322, 1989.

20.2.9 Succinctness tends to increase the complexity of a problem by an exponential;
Theorem 20.2 is only one example of the possibilities: '

(a) Define SUCCINCTKNAPSACKand show that it is NEXP-complete.

(b) Show that SUCCINCTREACHABILITYis PSPACE-complete. Repeat for the case
in which the graph is known to be a tree (recall Problem 16.4.4).

(c) Define SUCCINCTODDMAXFLOW and show that it is EXP-complete.

(d) Define NON-EMPTINESSto be the following problem: Given a graph, does it have
an edge? Show that SUCCINCTNON-EMPTINESSis NP-complete.

(e) Show that SUCCINCTCIRCUIT VALUE is complete for alternating polynomial
space.

The complexity of succinct versions of graph-theoretic problems was studied in

o H. Galperin and A. Wigderson "Succinct representations of graphs," Information
and Control, 56, pp. 183-198, 1983,

20.2 Notes, References, and Problems

where the exponential increase in the complexity of these problems was first observed.
The general reduction technique in the proof of Theorem 20.2 is from

o C. H. Papadimitriou and M. Yannakakis "A note on succinct representations of
graphs," Information and Control, 71, pp. 181-185, 1986.

For a much more detailed treatment of the subject see

o J. L. Balcazar, A. Lozano, and J. Toran "The complexity of algorithmic prob
lems in succinct instances," in Computer Science, edited by R. Baeza-Yates and
U. Manber, Plenum, New York, 1992.

20.2.10 Problem: We are given a set of square tile types T = {to, ... , tk}, together
with two relations H, V s;:: TxT (the horizontal and vertical compatibility relations
respectively). We are also given an integer n in binary. An n x n tiling is a function / ;
{I, ... ,n} x {l, ...,n} t--t T such that (a) /(1,1) = to, and (b) for all i,j (!(i,j),J(i +
l,j)) E H, and (f(i,j),J(i,j + 1)) E V. TILING is the problem of telling, given T,
H, V, and n, whether an n x n tiling exists. •
(a) Show that TILING is NEXP-complete.
(b) Show that TILING becomes NP-complete if n is given in unary (this is the suc

cinctness phenomenon, backwards).
(c) Show that it is undecidable to tell, given T, H, and V, whether an n x n tiling

exists for all n > O.

20.2.11 Decidable fragments of first-order logic. Besides the Schonfinkel
Bernays fragment of first-order logic shown NEXP-complete in Theorem 20.3, sat is
fiability can also be decided for function-free expressions with the following kinds of
quantifier sequences:
(a) Quantifiers of the form :J*\I:J* (that is, only one universal quantifier). This is the

Ackermann class, and is EXP-complete.
(b) Quantifiers of the form :J*W:J* (that is, only two consecutive universal quanti

fiers). This is the Godel class, and its satisfiability problem is NEXP-complete.

As it turns out, the validity problem for all other quantifier sequences is undecidable.
Yet another decidable case is this:
(c) Arbitrary expressions in vocabularies with only unary relation symbols. This is

the monadic case, and its satisfiability problem is NEXP-complete.

Research on these decidability results was a major part of Hilbert's program (see
the references in Chapter 6), and generally predated the undecidability of first-order
logic. For decidability, undecidability, and complexity results concerning segments of
first-order logic see, respectively,

o B. S. Dreben and W. D. Goldfarb The Decision Problem: Solvable Cases of
Quantification Formulas, Addison-Wesley, Reading, Massachusetts, 1979.

o H. R. Lewis Unsolvable Classes of Quantification Formulas, Addison-Wesley,
Reading, Massachusetts, 1979.

501

502 Chapter 20: A GLIMPSE BEYOND

o H. R. Lewis "Complexity results for classes of quantification formulas," in J.CSS
21, pp. 317-353, 1980.

20.2.12 The theory of reals. We noted in Chapter 9 that it is NP-complete to
tell whether a set of linear inequalities over the integers is satisfiable, while the same
problem for reals is in p. (recall INTEGER and LINEARPROGRAMMING,9.5.34). It
is amusing to notice that the complexity of problems relating to the integers and reals
exhibit a similar behavior in a much more general setting: While it is undecidable
whether a first-order expression over the vocabulary 0, 1,+, x ,< is a true property of
N (recall Coroallary 1 to Theorem 6.3), it is decidable whether such an expressions is
true a property of R, the real numbers. (To see the significant difference between the
two theories, consider

Vx'v'y3z[x 2': y v (x < z A z < y)].)

Let THEORYOF REALSbe the set of all first-order sentences l/J over this vocabulary
such that R F 1· THEORYOF REALS WITH ADDITION is the subset with no
occurrence 'of multiplication.

To show that THEORYOF REALSWITH ADDITIONis decidable, we use a general
technique that works in many other cases: Elimination of quantifiers. For any expres
sion in prenex form QIXI ... QnXnl/J(XI, ... , xn), where l/J is quantifier-free, we show
how to convert it to an equivalent quantifier-free expression. By induction, it suf
fices to show how we can transform the above expression to an equivalent expression
QIXI ... Qn-IXn-Il/JI(XI, ... ,Xn-l), with ¢I quantifier-free. In fact, assume Qn is V
(otherwise rewrite the expression in terms of V'Xn).

(a) Show that 1is a Boolean combination of k atomic expressions of the forms Xn I>

ii(XI, ... , xn-!), where I> E {=,<,>} and the £;'s are linear functions with rational
coefficients.

(b) Show that 11 above can be taken to be VIET 1[XI f- tJ, where T is the set of all
n2 terms !(ii(XI, ... ,Xn-l) + t'j(XI, ... ,xn-!)) for all i,j.

(c) Conclude that THEORY OF REALSWITH ADDITION is in 2-EXP. Can you
improve this to EXPSPACE?

For a weak lower bound, we can show that every problem in NEXP reduces to THE
ORY OF REALSWITH ADDITION. To this end, we construct for each n 2': 0 ex
pressions (1) Itn(X, y, z), (2) ~n(X, y, z), and (3) !3n(X,y), with length O(n), with the
indicated free variables. These expressions have the following properties: R satisfies
them, with real numbers a,b,c replacing variables x, y, z, if and only if, respectively:

. . 2n.. :(1) a IS an mteger between zero and 2 ,and a . b = c, (2) a and c are mteg~rs be-
tween zero and 22n, and b" = c; and (3) a and b are integers 0 :s: a :s: 2(2n+l). + 1),
o :s: b :s: 2n, and the bth bit of a is a one.

(d) Show how to construct these expressions, in logarithmic space in n, by induction
on n. (To avoid multiple uses of It; etc. in the definition of Iti+l you will have to use
the trick in the proof of Theorem 19.1.)

20.2 Notes, References, and Problems 503 .,
(e) Use these expressions to encode any nondeterministic exponential time computa
tion into a sentence, such that the sentence is in THEORYOF REALSWITH ADDI
TION if and only if the computation is successful (this is another exponentially dilated
version of Cook's theorem).

The complexity of THEORYOF REALSWITHADDITIONcan be pinpointed precisely
to a complexity class, but not one that we have defined in this book (at least, as far
as we know...): Alternating Turing machines with exponential time (so far we would
have all of exponential space) but with only n alternations per computation. This
result is from

o L. Berman "The complexity of logical theories," Theor. Compo Science 11, pp. 71-
78,1980.

Interestingly, THEORYOF REALS (the full language, including multiplication) is also
decidable. This is done also by elimination of quantifiers, but now of a much more
involved kind-for example, eliminating quantifiers from 3xa·x·x+b·x+c = 0 should
produce b . b 2': 4 . a . C. This is a classical result due to Alfred Tarski; interestingly, it
is still open whether the problem remains decidable if we also allow exponentiation.

If we weaken number theory by not allowing-exponentiation, we know that the
problem is still undecidable (recall the references in Chapter 6). If however we also
remove multiplication, we arrive at a fragment of number theory known as Pres burger
arithmetic. This theory is decidable also by elimination of quantifiers, and its com
plexity is also high, see for example

o M. J. Fischer and M. O. Rabin "Super-exponential complexity of Pres burger
arithmetic," Complexity of Computati OIl (R.M.Karp, ed.), SIAM-AMSSymp. in
Applied Mathematics, 1974.

20.2.13 Regular expresion equivalence. The class of regular expressions is a
language over the alphabet {O·,1,0,·, u*}, defined as follows: First, the unit-length
strings 1, 0, and 0 are regular expressions. Next, if p and pI are regular expressions,
then so are p . pI, P UpI, and p", The semantics of regular expressions is simple: The
meaning of regular expression p is a language L(p) <;;; {O, 1}*, defined inductively as
follows: First, L(O) = {O}, L(I) = {I}, and L(0) = n. Then, L(p. pI) = L(p)L(pl) =
{xy: X E L(p),y E L(pl)}, L(pUpl) = L(p) UL(pl), and L(p') = L(p)*.

(a) Describe L((O U 1*)*) and L((10 U 1)*U (11U 0)*). Can you design finite-state
automata, perhaps nondeterministic (recall Problems 2.8.11 and 2.8.18) that decide
these languages?

In fact, a language can be decided by a finite automaton if and only if it is the meaning
of a regular expression (this is why we called such languages regular in Problem 2.8.11).
One direction is easy:

(b) If p is a regular expression, show how to design a nondeterministic finite-state
automaton that decides L(p). (Obviously, by induction on the structure of p.) Can
you prove the other direction?

Two regular expressions p and pI are equivalent if L(p) = L(pl). Deciding whether
two regular expressions are equivalent is an important computational problem, whose

504 Chapter 20: A GLIMPSE BEYOND

variants are all over the upper complexity spectrum. These variants were explored in
a seminal paper

o L. J. Stockmeyer and A. R. Meyer "Word problems requiring exponential time,"
Proe. 5th ACM Symp. on the Theory of Computing, pp. 1-9, 1973.

(c) Show that the problem of deciding whether two regular expressions are equivalent
is complete for PSPACE even if one of the expressions is {O,I} ". (To show that it is in
PSPACE use nondeterminism. To show completeness, express as a regular expression
the set of all strings that do not eucode an accepting in-place computation of machine
M on input z.]
(d) Call a regular expression *-Iree if it has no occurrences of *, the Kleene star. Show
that deciding whether two *-free regular expressions are equivalent is coNP-complete.
(Membership in coNP is not hard. To prove completeness, start with an instarice of
3SAT and write a •-free regular expression for the set of truth assignments that fail
to satisfy it.]

(e) Suppose now that we allow the abbreviation 2 (squaring) in our regular expressions,
where L(l) = L(p)L(p). We'still do not allow ". Show that the equivalence problem
is now coNEXP-complete. (With 2 we can express nonsatisfying truth assignments
of an exponentially long expression, as long as its clauses have a certain regularity.
Notice that this is another instance of succinctness increasing the complexity by an
exponential.)

(f) Suppose next that both 2 and * are allowed. Show that the problem is now
complete for exponential space! (The succinctness phenomenon again, compare with
(c).)
(g) Finally, if we also allow the symbol. (semantics: L(.p) = {0,1}* - L(p» then
the equivalence problem is not even elementary. (Each occurrence of • can cause
the complexity to be raised by another exponential, intuitively because it may require
the conversion of a nondeterministic finite-state automaton to a nondeterministic one,
recall Problem 2.8.18 .)

20.2.14 A panorama of complexity classes; There is an amusing and instructive
way of looking at all diverse complexity classes discussed in this book from a unified
point of view. We have one model of computation: The nondeterministic, polynomial
time bounded Turing machine, standardized so that it has precisely two choices at each
step (arbitrarily ordered as the first and second choice) and halts after precisely pen)
steps on inputs of length n, where p is bounded by a polynomial, Such a machine
N operating on input x produces a computation tree with 2p(lxll leaves, each leaf
labeled with a "yes" or "no". Now, since choices are ordered, these leaves are also
ordered, and therefore the computation of N on input x can be considered as a string
in {O,1}2P(lXi), disregarding for a moment the distinction between "yes"-"no" and 1-0.
We denote this string as N(x).

A language L ~ {O,I}* will be called a leaf language. Let A and R be two disjoint
leaf languages (the accepting and rejecting leaf language, respectively). Now, aIiy two
such languages define a complexity dass: Let CIA, R] be the class of all languages

20.2 Notes, References; and Problems 505

L such that there is a (standardized) nondeterministic Turing machine N with the
following property: x E L if and only if N(x) E A, and x fj. L if and only if N(x) E R-

(a) Show that P = CIA, R] where A = 1* and R = 0°. Show that NP = CIA, R] where
A = {O,1}*1{0, 1}* and R = 0°. Show that RP = CIA, R] where A = {x E {0,1}* :
x has more l's than O's} and R = 0°.

(b) Find appropriate leaf languages A and R such that CIA, R] is: coNP, PP, BPP,
ZPP, UP, E!)P,NPncoNP, NPUcoNP, NPUBPP.

(c) Repeat for ~2P,~jP,PSPACE.

(d) Consider the leaf language A which consists of all strings x with the following
property: Ifx is subdivided into disjoint substrings of length 2k, where k = flog log z],
and if these W strings are considered as binary integers, then the largest such integer
is odd. Show that the class C[A,A] is .:l2P. (Recall Theor~m 17:5 and Problem
17.3.6.)

(e) Show that all leaf languages considered in (a) through (d) above are in NL. Show
that, if A, R E NL, then CIA, R] ~ PSPACE.

(f) Show that if A is an Nlr-complete leaf language, then CIA,A] = PSPACE

(g) Find leaf languages A and R such that CIA, R] =EXP. Repeat for NEXP.

(h) Which of the pairs of leaf languages A and R considered in (a) through (d) above
are complementary, that is, AU R = {O,I}O? Which can be redefined to be made
complementary? (For example, the pair for P in (a) is not complementary, but another
complementary pair exists.)

Notice the close correlation of the classes whose definitions are via complementary
pairs with the classes we have been informally calling syntactic, as opposed to seman
tic. In fact, a pe~ectly reasonable definition of "syntactic class" would be "any class
of the form C(A,A]."
(j) Define an appropriate class of functions from leaf languages to leaf languages
such that the following is true: If f is a function in this class and A and R are as
usual, disjoint leaf languages, then f(A), feR) are also disjoi~t leaf languages, ~nd
CIA, R] ~ C[f(A), feR)]
As it turns out, a formalism closely related to the leaf languages above can be used
to systematize proofs of oracle results, see

o D. P. Bovet, P. Crescenzi, and R. Silvestri "A uniform approach to define com-
plexity classes" Theor. Comp. Sci, 104, pp. 263-283, 1992.

20.2.15 Networks of queues. Suppose that we are given a network of queues, that
is, a finite set V = {1, ... ,n} of queues and a set T of customer types, where a type
t; = (Pi,ai, Sc;Wi) is a set H ~ V* of paths (sequences of queues that are acceptable
ways of servicing a customer of this type), an inter-arrival time distribution ai (how
often customers of this sort arrive in the system), for each queue j EVa service time
distribution Sij (how long such a customer is going to spend in queue j), and a weight

1

I I

~L

506 Chapter 20: A GLIMPSE BEYOND

ui; (how important for the system is this class of customers). The distributions are
discrete ones, and are given explicitly in terms of a set of value-probability pair. The
problem is to control this system -basically, to decide how to proceed each time a
customer arrives or finishes service at a queue--so as to minimize the weighted sum
of the expected total waiting times of the customers.

This is a well-known, important, and fantastically hard problem -for example
the case of two queues (n = 2) is already a notoriously difficult problem.

Problem: Formulate the problem precisely, and show that it is EXP-complete (use
alternating polynomial space).

20.2.16 Interactive proofs and exponential time. Recall the interactive proof
systems between Alice and Bob defined in Section 12.2, and shown in Theorem 19.8 to
coincide with PSPACE. Suppose that we extend this idea to multiple provers. That
is, the protocol is now between Bob, who as always has polynomial computing powers
and randomization, and several provers -call them Alice, Amy, Ann, April, and so
on--each with exponential powers, and each very interested in convincing Bob that a
string x is actually in language L. Bob can now address each of his questions to any
one of the provers, and the prover must answer. In fact, for each input x Bob may
interact with a number of provers that depends polynomially on [z']. Again if x E L
we want Bob to accept x with probability one; if x ric L, then for any possible set of
provers we want Bob to accept with probability less than 2-lxl.

The key feature which makes the situation interesting is that the provers cannot
communicate with each other during the protocol. If they could, the situation would
be identical to the one with a single prover (a gang of conspiring provers behaves
exactly like one prover). But the inability of provers to communicate makes it harder
for them to fool Bob, and, as we shall see, possibly allows for more interesting and
powerful languages to be thus decided.

If a language L can be decided as above, we say that it has a multiprover inter
active proof system; we write L E MIP. We say that L has an oracle proof system
if the following holds: There is a randomized oracle Turing machine M? such that, if
x E L then there is an oracle A such that J\,f.4(x) = "yes" with probability one; and
if x ric L, then for all oracles B, MB(x) = "yes" with probability less than Tlxl.

(a) Show that the following are equivalent:
(1) L E MIP.
(2) L has an interactive proof system with two provers.
(3) L has an oracle proof system.

(That (2) implies (1) is, of course, trivial. To show that (1) implies (3), think that
the provers agree beforehand (as they have to, because of the lack of communication]
on all answers each of them will give to any question by Bob; express this protocol as
an oracle machine. To show that (3) implies (2), Bob can simulate MA by asking one
of the provers the oracle queries, and at the end asking the second prover a randomly
selected query among those asked of the first-to make sure that the first prover is
reciting some oracle, and is not basing her answers on the interaction. Repeat enough
times. This argument is from

20.2 Notes, References, and Problems 507 .,
o L. Fortnow, J. Rompel, and M. Sipser "On the power of multiprover interactive
protocols," Proc. 3rd Conference on Structure in Complexity Theory, pp. 156-
161, 1988.)

(b) Based on (a), show that MIP ~ N~XP. (Use (3).)

Surprisingly, it can be shown that these two classes coincide. Once more, the power
of interactive protocols achieves its limits (compare with Shamir's theorem, Theorem
19.8). This was proved in

o L. Babai, L. Fortnow, and C. Lund "Nondeterministic exponential time has two
prover interactive protocols," Proc. 31st IEEE Symp. on the Foundations of
Computer Science, pp. 16-25, L}90; also, Computational Complexity 1, pp. 3-
40, 1991

by extending the "arithmetization" methodology used in the proof of Shamir's theorem
to devise an oracle proof system for a version of SUCCINCT 3SAT (Corollary 1 of
Theorem 20.2). The proof now is much more sophisticated. An instance of SUCCINCT
3SAT, together with an alleged satisfying truth assignment provided by the oracle, is
converted into a long summation, very much as in the proof of Shamir's theorem. If
the truth assignment provided by the oracle is a multilinear function (a polynomial
of degree one in each variable), then a modification of the proof of Shamir's theorem
works. Finally, the oracle has to be tested for multilineenty -and this turns out to
be the heart of the proof.

20.2.11 NEXP and approximability. The next important step in the array of
fascinating developments which led to the proof of Theorem 13.13 was the observation
that probabilistic interactive proofs are relevant to the approximability of optimization
problems; this was first pointed out in

o U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy "Approximating
clique is almost NP-complete," Proc. 32nd IEEE Symp. on the Foundations of
Computer Science, pp. 2-12, 1991.

The idea is simple: Suppose that L E NEXP; by the previous problem, we can
assume that L has an oracle proof system M? Let V (x) now be the set of all possible
accepting computations of M? on input x-they are exponentially many in [z]. Define
the following set of edges: (c,c'J E E(x), where c, c' are computations in V(x), if and
only if there is an oracle A that can cause M? to follow both c and c' (in other words,
if c and c' are "compatible"). It turns out that, since M? is an oracle proof system
for L, the maximum clique of the graph (V(x), E(x» is either very small (if x ric L)
or very large (in the case x E L).

Problem: Conclude that if the approximation threshold of CLIQUE (or INDEPEN
DENT SET, for that matter) is strictly less than one, then EXP = NEXP (compare
with Corollary 2 of Theorem 13.13).

Much of the present chapter has been about ideas and techniques from the P ~ NP
problem "scaled up" to exponential time. Going from the above result to

508 Chapter 20: A GLIMPSEBEYOND

o S. Arora, S. Safra "Probabilistic checking of proofs," Proc. 33rd IEEE Symp. on
the Foundations of Computer Science, pp. 2-13, 1992,

and ultimately to

o S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy "Proof verifica
tion and hardness of approximation problems," Proc. 33rd IEEE Symp. on the
Foundations of Computer Science, pp. 14-23, 1992

and Theorems 13.12 and 13.3 involved clever arguments for efficiently "scaling down"
to the polynomial domain the techniques of arithmetization and multilinear testing; in
fact, this scaling-down effort had already started in the paper by Feige et al. referenced
above. For a comprehensive account of these techniques see

o M. Sudan Efficient Checking of Polynomials and Proofs and the Hardness of
Approximation Problems, PhD dissertation, Univ. of California Berkeley, 1992.

Index

ABPP, 474, 475, 480
AC, 385, 386
acceptlllgianguage, 504
advice string, 277
AL, 400, 401
algorithm, 1, 3, 4, 24

approximation, 300
e-approximate, 300
LIl8 Vegas, 256
local improvement, 303
Monte Carlo, 244, 247, 253
NC,376
parallel, 359
polynomial-time, 6, 11, 13, 137
pseudopolynomial, 203, 216, 221,

305
randomized, 244
RNC, 381

Alice, 279
alphabet, 19
amplifier, 316, 318
ANOTHER HAMILTON CYCLE, 232
AP, 400, 458
APP, 471
approximation algorithm, 300
approximation threshold, 300-302, 304,

305, 309
arithmetical hierarchy, 68
arithmetization, 476, 507

Arthur-Merlin game, 296
ASPACE(f(n)), 400
8-assignment, 263
asymptotic e-approximate algorithm,

323.
ATIME(f(nr), 400
atomic expression, 87
average-case NP-complete problems,

298
average-case analysis of algorithms,

7,297,298
axiom, 101, 124

nonlogical, 104
axiomatic method, 103
axiomatization, 103

BANDWIDTH MINIMIZATION, 215
Bernoulli random variable, 258
BIN PACKING, 204, 323-325
binary representation of integers, 10,

26,43
binary search, 228, 417
bipartite graph, 11, 213
BISECTION WIDTH, 193, 211
block respecting Thring machine, 157
Blum complexity, 156
board games, 459, 460, 487
Bob, 279

509

