
Distributed Mutual Exclusion

CS60002: Distributed Systems

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

Pallab Dasgupta

Professor,

Dept. of Computer Sc. & Engg.,

Indian Institute of Technology Kharagpur

Mutual Exclusion

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

 Very well-understood in shared memory systems

 Requirements:

– at most one process in critical section (safety)

– if more than one requesting process, someone enters (liveness)

– a requesting process enters within a finite time (no starvation)

– requests are granted in order (fairness)

Types of Dist. Mutual Exclusion Algorithms

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3

 Non-token based / Permission based

– Permission from all processes: e.g. Lamport, Ricart-Agarwala,

Raicourol-Carvalho etc.

– Permission from a subset: ex. Maekawa

 Token based

– ex. Suzuki-Kasami

Some Complexity Measures

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

 No. of messages/critical section entry

 Synchronization delay

 Response time

 Throughput

Lamport’s Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5

 Every node i has a request queue qi

– keeps requests sorted by logical timestamps (total ordering enforced by

including process id in the timestamps)

 To request critical section:

– send timestamped REQUEST(tsi, i) to all other nodes

– put (tsi, i) in its own queue

 On receiving a request (tsi, i):

– send timestamped REPLY to the requesting node i

– put request (tsi, i) in the queue

Lamport’s Algorithm contd..

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6

 To enter critical section:

– Process i enters critical section if:

• (tsi, i) is at the top if its own queue, and

• Process i has received a message (any message) with timestamp larger than

(tsi, i) from ALL other nodes.

 To release critical section:

– Process i removes its request from its own queue and sends a timestamped

RELEASE message to all other nodes

– On receiving a RELEASE message from i, i’s request is removed from the local

request queue

Some notable points

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 7

 Purpose of REPLY messages from node i to j is to ensure that j knows of all requests of i

prior to sending the REPLY (and therefore, possibly any request of i with timestamp lower

than j’s request)

 Requires FIFO channels.

 3(n – 1) messages per critical section invocation

 Synchronization delay = max mesg transmission time

 Requests are granted in order of increasing timestamps

The Ricart-Agrawala Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 8

 Improvement over Lamport’s

 Main Idea:

– node j need not send a REPLY to node i if j has a request with timestamp lower

than the request of i (since i cannot enter before j anyway in this case)

 Does not require FIFO

 2(n – 1) messages per critical section invocation

 Synchronization delay = max. message transmission time

 Requests granted in order of increasing timestamps

The Ricart-Agrawala Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

 To request critical section:

– send timestamped REQUEST message (tsi, i)

 On receiving request (tsi, i) at j:

– send REPLY to i if j is neither requesting nor executing critical section or

– if j is requesting and i’s request timestamp is smaller than j’s request timestamp.

Otherwise, defer the request.

 To enter critical section:

– i enters critical section on receiving REPLY from all nodes

 To release critical section:

– send REPLY to all deferred requests

Roucairol-Carvalho Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
0

 Improvement over Ricart-Agarwala

 Main idea

– Once i has received a REPLY from j, it does not need to send a REQUEST to j

again unless it sends a REPLY to j (in response to a REQUEST from j)

– Message complexity varies between 0 and 2(n – 1) depending on the request

pattern

– worst case message complexity still the same

Maekawa’s Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
1

 Permission obtained from only a subset of other processes, called the Request Set (or

Quorum)

 Separate Request Set, Ri, for each process i

 Requirements:

– for all i, j: Ri ∩ Rj ≠ Φ

– for all i: i Є Ri

– for all i: |Ri| = K, for some K

– any node i is contained in exactly D Request Sets, for some D

NDK  for Maekawa’s

A Simple Version

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
2

 To request critical section:

– i sends REQUEST message to all process in Ri

 On receiving a REQUEST message:

– Send a REPLY message if no REPLY message has been sent since the last

RELEASE message is received.

– Update status to indicate that a REPLY has been sent.

– Otherwise, queue up the REQUEST

 To enter critical section:

– i enters critical section after receiving REPLY from all nodes in Ri

A Simple Version contd..

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
3

 To release critical section:

– Send RELEASE message to all nodes in Ri

– On receiving a RELEASE message, send REPLY to next node in queue and

delete the node from the queue.

– If queue is empty, update status to indicate no REPLY message has been sent.

Features

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
4

 Message Complexity:

 Synchronization delay =

– 2*(max message transmission time)

 Major problem: DEADLOCK possible

 Need three more types of messages (FAILED, INQUIRE, YIELD) to handle deadlock.

– Message complexity can be 5*sqrt(N)

 Building the request sets?

N*3

Token based Algorithms

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
5

 Single token circulates, enter CS when token is present

 Mutual exclusion obvious

 Algorithms differ in how to find and get the token

 Uses sequence numbers rather than timestamps to differentiate between old and current

requests

Suzuki Kasami Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
6

 Broadcast a request for the token

 Process with the token sends it to the requestor if it does not need it

 Issues:

– Current versus outdated requests

– Determining sites with pending requests

– Deciding which site to give the token to

Suzuki Kasami Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
7

 The token:

– Queue (FIFO) Q of requesting processes

– LN[1..n] : sequence number of request that j executed most recently

 The request message:

– REQUEST(i, k): request message from node i for its kth critical section

execution

 Other data structures

– RNi[1..n] for each node i, where RNi[j] is the largest sequence number

received so far by i in a REQUEST message from j.

Suzuki Kasami Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
8

 To request critical section:

– If i does not have token, increment RNi[i] and send REQUEST(i, RNi[i]) to all

nodes

– If i has token already, enter critical section if the token is idle (no pending

requests), else follow rule to release critical section

 On receiving REQUEST(i, sn) at j:

– Set RNj[i] = max(RNj[i], sn)

– If j has the token and the token is idle, then send it to i if RNj[i] = LN[i] + 1. If

token is not idle, follow rule to release critical section

Suzuki Kasami Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
9

 To enter critical section:

– Enter CS if token is present

 To release critical section:

– Set LN[i] = RNi[i]

– For every node j which is not in Q (in token), add node j to Q if RNi[j] = LN[j] + 1

– If Q is non empty after the above, delete first node from Q and send the token to

that node

Notable features

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
0

 No. of messages:

– 0 if node holds the token already, n otherwise

 Synchronization delay:

– 0 (node has the token) or max. message delay (token is elsewhere)

 No starvation

Raymond’s Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
1

 Forms a directed tree (logical) with the token-holder as root

 Each node has variable “Holder” that points to its parent on the path to the root.

– Root’s Holder variable points to itself

 Each node i has a FIFO request queue Qi

Raymond’s Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
2

 To request critical section:

– Send REQUEST to parent on the tree, provided i does not hold the token currently

and Qi is empty. Then place request in Qi

 When a non-root node j receives a request from i

– place request in Qj

– send REQUEST to parent if no previous REQUEST sent

Raymond’s Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
3

 When the root receives a REQUEST:

– send the token to the requesting node

– set Holder variable to point to that node

 When a node receives the token:

– delete first entry from the queue

– send token to that node

– set Holder variable to point to that node

– if queue is non-empty, send a REQUEST message to the parent (node pointed at

by Holder variable)

Raymond’s Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
4

 To execute critical section:

– enter if token is received and own entry is at the top of the queue; delete the entry

from the queue

 To release critical section

– if queue is non-empty, delete first entry from the queue, send token to that node

and make Holder variable point to that node

– If queue is still non-empty, send a REQUEST message to the parent (node pointed

at by Holder variable)

Notable features

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
5

 Average message complexity: O(log n)

 Sync. delay = (T log n)/2, where T = max. message delay

