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Mutual Exclusion 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
 

 Very well-understood in shared memory systems 

 

 Requirements: 

– at most one process in critical section (safety) 

– if more than one requesting process, someone enters (liveness) 

– a requesting process enters within a finite time (no starvation) 

– requests are granted in order (fairness) 



Types of Dist. Mutual Exclusion Algorithms 
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 Non-token based / Permission based 

– Permission from all processes: e.g. Lamport, Ricart-Agarwala, 

Raicourol-Carvalho etc. 

– Permission from a subset: ex. Maekawa 

 

 Token based 

– ex. Suzuki-Kasami 

 



Some Complexity Measures 
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 No. of messages/critical section entry 

 Synchronization delay 

 Response time 

 Throughput 



Lamport’s Algorithm 
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 Every node i has a request queue qi  

– keeps requests sorted by logical timestamps (total ordering enforced by 

including process id in the timestamps)  

 

 To request critical section: 

– send timestamped REQUEST(tsi, i) to all other nodes 

– put (tsi, i) in its own queue 

 

 On receiving a request (tsi, i): 

– send timestamped REPLY to the requesting node i  

– put request (tsi, i) in the queue 



Lamport’s Algorithm contd.. 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6
 

 To enter critical section: 

– Process i enters critical section if: 

• (tsi, i) is at the top if its own queue, and  

• Process i has received a message (any message) with timestamp larger than 

(tsi, i) from ALL other nodes. 

 

 To release critical section: 

– Process i removes its request from its own queue and sends a timestamped 

RELEASE message to all other nodes 

– On receiving a RELEASE message from i, i’s request is removed from the local 

request queue 



Some notable points 
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 Purpose of REPLY messages from node i to j is to ensure that j knows of all requests of i 

prior to sending the REPLY (and therefore, possibly any request of i with timestamp lower 

than j’s request) 

 

 Requires FIFO channels.  

 

 3(n – 1 ) messages per critical section invocation 

 

 Synchronization delay = max mesg transmission time 

 

 Requests are granted in order of increasing timestamps 



The Ricart-Agrawala Algorithm 
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 Improvement over Lamport’s 

 

 Main Idea: 

– node j need not send a REPLY to node i if j has a request with timestamp lower 

than the request of i (since i cannot enter before j anyway in this case) 
 

 Does not require FIFO 

 

 2(n – 1) messages per critical section invocation 

 

 Synchronization delay = max. message transmission time 
 

 Requests granted in order of increasing timestamps 



The Ricart-Agrawala Algorithm 
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 To request critical section: 

– send timestamped REQUEST message (tsi, i) 
 

 On receiving request (tsi, i) at j: 

– send REPLY to i if j is neither requesting nor executing critical section or  

– if j is requesting and i’s request timestamp is smaller than j’s request timestamp. 

Otherwise, defer the request. 
 

 To enter critical section: 

– i enters critical section on receiving REPLY from all nodes 
 

 To release critical section: 

– send REPLY to all deferred requests 



Roucairol-Carvalho Algorithm 
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 Improvement over Ricart-Agarwala 
 

 Main idea 

– Once i has received a REPLY from j, it does not need to send a REQUEST to j 

again unless it sends a REPLY to j (in response to a REQUEST from j) 
 

– Message complexity varies between 0 and 2(n – 1) depending on the request 

pattern 
 

– worst case message complexity still the same 



Maekawa’s Algorithm 
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 Permission obtained from only a subset of other processes, called the Request Set (or 

Quorum) 

 

 Separate Request Set, Ri, for each process i 

 

 Requirements: 

– for all i, j: Ri ∩ Rj ≠ Φ 

– for all i: i Є Ri 

– for all i: |Ri| = K, for some K 

– any node i is contained in exactly D Request Sets, for some D 

NDK                                 for Maekawa’s 



A Simple Version 
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 To request critical section: 

– i sends REQUEST message to all process in Ri 

 

 On receiving a REQUEST message: 

– Send a REPLY message if no REPLY message has been sent since the last 

RELEASE message is received.  

– Update status to indicate that a REPLY has been sent. 

– Otherwise, queue up the REQUEST 

 

 To enter critical section: 

– i enters critical section after receiving REPLY from all nodes in Ri 



A Simple Version contd.. 
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 To release critical section: 

– Send RELEASE message to all nodes in Ri 

– On receiving a RELEASE message, send REPLY to next node in queue and 

delete the node from the queue.  

– If queue is empty, update status to indicate no REPLY message has been sent. 

 

 



Features 
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 Message Complexity: 

 

 Synchronization delay = 

– 2*(max message transmission time) 

 

 Major problem: DEADLOCK possible 

 

 Need three more types of messages (FAILED, INQUIRE, YIELD) to handle deadlock.  

– Message complexity can be 5*sqrt(N) 

 

 Building the request sets? 

N*3



Token based Algorithms 
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 Single token circulates, enter CS when token is present 

 

 Mutual exclusion obvious 

 

 Algorithms differ in how to find and get the token 

 

 Uses sequence numbers rather than timestamps to differentiate between old and current 

requests 



Suzuki Kasami Algorithm 
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 Broadcast a request for the token 

 

 Process with the token sends it to the requestor if it does not need it 

 

 Issues: 

– Current versus outdated requests 

– Determining sites with pending requests 

– Deciding which site to give the token to 



Suzuki Kasami Algorithm 
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 The token: 

– Queue (FIFO) Q of requesting processes 

– LN[1..n] : sequence number of request that j executed most recently 

 

 The request message: 

– REQUEST(i, k): request message from node i for its kth critical section 

execution 

 

 Other data structures 

– RNi[1..n] for each node i, where RNi[ j ] is the largest sequence number 

received so far by i in a REQUEST message from j. 

 



Suzuki Kasami Algorithm 
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 To request critical section: 

– If i does not have token, increment RNi[ i ] and send REQUEST(i, RNi[ i ]) to all 

nodes 

– If i has token already, enter critical section if the token is idle (no pending 

requests), else follow rule to release critical section 

 

 On receiving REQUEST(i, sn) at j: 

– Set RNj[ i ] = max(RNj[ i ], sn) 

– If j has the token and the token is idle, then send it to i if RNj[ i ] = LN[ i ] + 1. If 

token is not idle, follow rule to release critical section 

 



Suzuki Kasami Algorithm 
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 To enter critical section: 

– Enter CS if token is present 

 

 To release critical section: 

– Set LN[ i ] = RNi[ i ] 

– For every node j which is not in Q (in token), add node j to Q if RNi[ j ] = LN[ j ] + 1 

– If Q is non empty after the above, delete first node from Q and send the token to 

that node 



Notable features 
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 No. of messages:  

– 0 if node holds the token already, n otherwise 

 

 Synchronization delay:  

– 0 (node has the token) or max. message delay (token is elsewhere) 

 

 No starvation 

 

 



Raymond’s Algorithm 
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 Forms a directed tree (logical) with the token-holder as root  

 

 Each node has variable “Holder” that points to its parent on the path to the root.  

– Root’s Holder variable points to itself 

 

 Each node i has a FIFO request queue Qi 

 



Raymond’s Algorithm 
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 To request critical section: 

– Send REQUEST to parent on the tree, provided i does not hold the token currently 

and Qi is empty. Then place request in Qi 

 

 When a non-root node j receives a request from i 

– place request in Qj 

– send REQUEST to parent if no previous REQUEST sent 

 



Raymond’s Algorithm 
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 When the root receives a REQUEST: 

– send the token to the requesting node 

– set Holder variable to point to that node 

 

 When a node receives the token: 

– delete first entry from the queue 

– send token to that node 

– set Holder variable to point to that node 

– if queue is non-empty, send a REQUEST message to the parent (node pointed at 

by Holder variable) 

 



Raymond’s Algorithm 
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 To execute critical section: 

– enter if token is received and own entry is at the top of the queue; delete the entry 

from the queue 

 

 To release critical section 

– if queue is non-empty, delete first entry from the queue, send token to that node 

and make Holder variable point to that node 

– If queue is still non-empty, send a REQUEST message to the parent (node pointed 

at by Holder variable) 



Notable features 
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 Average message complexity: O(log n) 

 

 Sync. delay = (T log n)/2, where T = max. message delay 


