
Logical Clocks and Casual Ordering

CS60002: Distributed Systems

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

Pallab Dasgupta

Professor,

Dept. of Computer Sc. & Engg.,

Indian Institute of Technology Kharagpur

Why do we need global clocks?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

 For causally ordering events in a distributed system

– Example:

• Transaction T transfers Rs 10,000 from S1 to S2

• Consider the situation when:

– State of S1 is recorded after the deduction and state of S2 is recorded before the addition

– State of S1 is recorded before the deduction and state of S2 is recorded after the addition

 Should not be confused with the clock-synchronization problem

What data is being transmitted? 0101?

Yes, if this is the clock

If this is the clock, then 01110001

The receiver needs to know the clock of the sender

Ordering of Events

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3

Lamport’s Happened Before relationship:

For two events a and b, a → b if

• a and b are events in the same process and a occurred before b, or

• a is a send event of a message m and b is the corresponding receive event at the

destination process, or

• a → c and c → b for some event c

Causally Related versus Concurrent

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

e11 e12 e13 e14

e21 e22 e23 e24

P1

P2

e11 and e21 are concurrent

e14 and e23 are concurrent

e22 causally affects e14

A space-time diagram

Causally related events:

• Event a causally affects event b if a  b

Concurrent events:

• Two distinct events a and b are said to be concurrent (denoted by a||b) if a  b and b  a

Lamport’s Logical Clock

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5

Each process i keeps a clock Ci

– Each event a in i is time-stamped Ci(a), the value of Ci when a occurred

– Ci is incremented by 1 for each event in i

– In addition, if a is a send of message m from process i to j, then on receive of m,

 Cj = max (Cj, Ci(a)+1)

How Lamport’s clocks advance

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6

e11 e12 e13 e14

e21 e22 e23 e24

P1

P2

e25

e15 e16 e17

(1) (2) (3) (4) (5) (6) (7)

(1) (2) (3) (4) (7)

Points to note

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 7

 if a → b, then C(a) < C(b)

 → is a partial order

 Total ordering possible by arbitrarily ordering concurrent events by process numbers

Limitation of Lamport’s Clock

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 8

a → b implies C(a) < C(b)

BUT

C(a) < C(b) doesn’t imply a → b !!

 So not a true clock !!

Solution: Vector Clocks

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

Each process Pi has a clock Ci, which is a vector of size n

The clock Ci assigns a vector Ci(a) to any event a at Pi

Update rules:

• Ci[i]++ for every event at process I

• If a is send of message m from i to j with vector timestamp tm, then on receipt of m:

 Cj[k] = max(Cj[k], tm[k]) for all k

Partial Order between Timestamps

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
0

For events a and b with vector timestamps ta and tb,

• Equal: ta = tb iff i, ta[i] = tb[i]

• Not Equal: ta ≠ tb iff i, ta[i] ≠ tb[i]

• Less or equal: ta ≤ tb iff i, ta[i] ≤ tb[i]

• Not less or equal: ta ≤ tb iff i, ta[i] > tb[i]

• Less than: ta < tb iff (ta ≤ tb and ta ≠ tb)

• Not less than: ta < tb iff (ta ≤ tb and ta ≠ tb)

• Concurrent: ta || tb iff (ta < tb and tb < ta)

Causal Ordering

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
1

 a → b iff ta < tb

 Events a and b are causally related iff ta < tb or tb < ta, else they are concurrent

 Note that this is still not a total order

Use of Vector Clocks in Causal Ordering of Messages

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
2

 If send(m1) → send(m2), then every recipient of both message m1 and m2 must

“deliver” m1 before m2.

– “deliver” – when the message is actually given to the application for

processing

Birman-Schiper-Stephenson Protocol

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
3

 To broadcast m from process i, increment Ci(i), and timestamp m with VTm = Ci[i]

 When j ≠ i receives m, j delays delivery of m until

– Cj[i] = VTm[i] –1 and

– Cj[k] ≥ VTm[k] for all k ≠ i

– Delayed messages are queued in j sorted by vector time. Concurrent messages are

sorted by receive time.

 When m is delivered at j, Cj is updated according to vector clock rule.

Problem of Vector Clock

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
4

 Message size increases since each message needs to be tagged with the vector

 Size can be reduced in some cases by only sending values that have changed

Global State Recording

CS60002: Distributed Systems

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
5

Pallab Dasgupta

Professor,

Dept. of Computer Sc. & Engg.,

Indian Institute of Technology Kharagpur

Global State Collection

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
6

 Applications:

– Checking “stable” properties, checkpoint & recovery

 Issues:

– Need to capture both node and channel states

– system cannot be stopped

– no global clock

Notations

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
7

Some notations:

– LSi: Local state of process I

– send(mij) : Send event of message mij from process i to process j

– rec(mij) : Similar, receive instead of send

– time(x) : Time at which state x was recorded

– time (send(m)) : Time at which send(m) occurred

Definitions

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
8

 send(mij) є LSi iff time(send(mij)) < time(LSi)

 rec(mij) є LSj iff time(rec(mij)) < time(LSj)

 transit(LSi, LSj)

 = { mij | send(mij) є LSi and rec(mij)  LSj }

 inconsistent(LSi, LSj)

 = { mij | send(mij)  LSi and rec(mij) є LSj }

Definitions

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
9

 Global state: collection of local states

 GS = {LS1, LS2,…, LSn}

 GS is consistent iff

 for all i, j, 1 ≤ i, j ≤ n,

 inconsistent(LSi, LSj) = Ф

 GS is transitless iff

 for all i, j, 1 ≤ i, j ≤ n,

 transit(LSi, LSj) = Ф

 GS is strongly consistent if it is consistent and transitless.

Chandy-Lamport’s Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
0

 Uses special marker messages.

 One process acts as initiator, starts the state collection by following the marker sending

rule below.

 Marker sending rule for process P:

– P records its state and

– For each outgoing channel C from P on which a marker has not been sent already,

P sends a marker along C before any further message is sent on C

Chandy Lamport’s Algorithm contd..

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
1

 When Q receives a marker along a channel C:

– If Q has not recorded its state then Q records the state of C as empty; Q then follows

the marker sending rule

– If Q has already recorded its state, it records the state of C as the sequence of

messages received along C after Q’s state was recorded and before Q received the

marker along C

Notable Points

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
2

 Markers sent on a channel distinguish messages sent on the channel before the sender

recorded its states and the messages sent after the sender recorded its state

 The state collected may not be any state that actually happened in reality, rather a state

that “could have” happened

 Requires FIFO channels

 Message complexity O(|E|), where E = no. of links

Termination Detection

CS60002: Distributed Systems

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
3

Pallab Dasgupta

Professor,

Dept. of Computer Sc. & Engg.,

Indian Institute of Technology Kharagpur

Termination Detection

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
4

 Model

– processes can be active or idle

– only active processes send messages

– idle process can become active on receiving a computation message

– active process can become idle at any time

– Termination: all processes are idle and no computation message are in transit

– Can use global snapshot to detect termination also

Huang’s Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
5

 One controlling agent, has weight 1 initially

 All other processes are idle initially and has weight 0

 Computation starts when controlling agent sends a computation message to a process

 An idle process becomes active on receiving a computation message

 B(DW) – computation message with weight DW. Can be sent only by the controlling agent

or an active process

 C(DW) – control message with weight DW, sent by active processes to controlling agent

when they are about to become idle

Weight Distribution and Recovery

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
6

 Let current weight at process = W

 Send of B(DW):

– Find W1, W2 such that W1 > 0, W2 > 0, W1 + W2 = W

– Set W = W1 and send B(W2)

 Receive of B(DW):

– W = W + DW;

– if idle, become active

 Send of C(DW):

– send C(W) to controlling agent

– Become idle

 Receive of C(DW):

– W = W + DW

– if W = 1, declare “termination”

