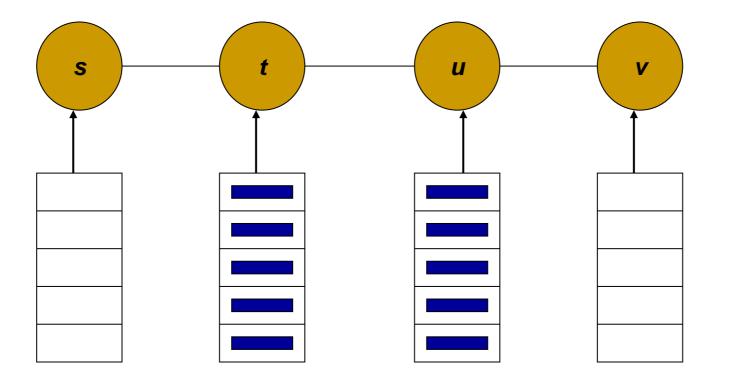
Deadlock-free Packet Switching

CS60002: Distributed Systems

Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Store and forward deadlock



Buffer-size = 5

Node *s* sending 5 packets to *v* through *t* Node *v* sending 5 packets to *s* through *u*

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Model

- The network is a graph G = (V, E)
- Each node has *B* buffers

Moves:

- *Generation.* A node *u* creates a new packet *p* and places it in an empty buffer in *u*. Node *u* is the source of *p*.
- *Forwarding.* A packet *p* is forwarded from a node *u* to an empty buffer in the next node *w* on its route.
- **Consumption.** A packet *p* occupying a buffer in its destination node is removed from the buffer.

Requirements

The packet switching controller has the following requirements:

- 1. The consumption of a packet (at its destination) is always allowed.
- 2. The generation of a packet in a node where all buffers are empty is always allowed.
- 3. The controller uses only local information, that is, whether a packet can be accepted in a node *u* depends only on information known to *u* or contained in the packet

Solutions

- Structured solutions
 - Buffer-graph based schemes
 - The destination scheme
 - The hops-so-far scheme
 - Acyclic orientation based scheme
- Unstructured solutions
 - Forward count and backward count schemes
 - Forward state and backward state schemes

Buffer Graph

- A buffer graph (for, G, B) is a directed graph BG on the buffers of the network, such that
 - 1. BG is acyclic (contains no directed cycle);
 - 2. *bc* is an edge of *BG* if *b* and *c* are buffers in the same node, or buffers in two nodes connected by a channel in G; and
 - 3. for each path $\pi \in P$ there exists a path in *BG* whose image is π .
 - P is the collection of all paths followed by the packets this collection is determined by the routing algorithm.

Suitable buffer and guaranteed path

Let *p* be a packet in node *u* with destination *v*.

- A buffer b in u is suitable for p if there is a path in BG from b to a buffer c in v, whose image is a path that p can follow in G.
- One such path in BG will be designated as the guaranteed path and nb(p, b) denotes the next buffer on the guaranteed path.
- For each newly generated packet p in u there exists a designated suitable buffer, fb(p) in u.

The buffer-graph controller

A buffer-graph controller decides how packets are routed through the BG.

Requirements

1. The generation of a packet *p* in *u* is allowed iff the buffer *fb*(*p*) is free. If the packet is generated it is placed in this buffer.

The forwarding of a packet p from a buffer in u to a buffer in w is allowed iff nb(p, b) (in w) is free. If the forwarding takes place p is placed in nb(p, b).

The buffer-graph controller is a deadlock-free controller.

The Destination Scheme

- Uses *N* buffers in each node *u*, with a buffer $b_u[v]$ for each possible destination *v*
 - It is assumed that the routing algorithm forwards all packets with destination v via a directed tree T_v rooted towards v.

The buffer graph is defined by BG = (B, E), where $b_u[v_1]b_w[v_2] \in E$ iff $v_1 = v_2$ and uw is an edge of T_{v_1} .

There exists a deadlock-free controller for arbitrary connected networks that uses N buffers in each node and allows packets to be routed via arbitrarily chosen sink trees

The Hops-so-far Scheme

- Node *u* contains k + 1 buffers $b_u[0], ..., b_u[k]$.
- It is assumed that each packet contains a hop-count indicating how many hops the packet has made from its source

The buffer graph is defined by BG = (B, E), where $b_u[i]b_w[j] \in E$ iff i + 1 = j and uw is an edge of the network.

There exists a deadlock-free controller for arbitrary connected networks that uses D+1 buffers in each node (where D is the diameter of the network), and requires packets to be sent via minimum-hop paths.

Acyclic Orientation based Scheme

Goal: To use only a few buffers per node

- An acyclic orientation of G is a directed acyclic graph obtained by directing all edges of G
- A sequence $G_1, ..., G_B$ of acyclic orientations of G is an *acyclic orientation cover* of size B for the collection P of paths if each path $\pi \in P$ can be written as a concatenation of B paths $\pi_1, ..., \pi_B$, where π_l is a path in G_i .
 - A packet is always generated in node u in buffer b_u [1]
 - A packet in buffer $b_u[i]$ that must be forwarded to node *w* is placed in buffer $b_w[i]$ if the edge between *u* and *w* is directed towards *w* in G_i , and to $b_w[i + 1]$ if the edge is directed towards *u* in G_i .

If an acyclic orientation cover for P of size B exists, then there exists a deadlock-free controller using only B buffers in each node. INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Forward and Backward-count Controllers

Forward-count Controller:

- For a packet *p*, let s_p be the number of hops it still has to make to its destination ($0 \le s_p \le k$)
- For a node u, f_u denotes the number of free buffers in u ($0 \le f_u \le B$)

The controller accepts a packet *p* in node *u* iff $s_p < f_u$.

If B > k then the above controller is a deadlock-free controller

Backward-count Controller:

• For a packet p, let t_p be the number of hops it has made from its source

The controller accepts a packet *p* in node *u* iff $t_p > k - f_u$.

Forward and Backward-state Controllers

Forward-state Controller:

For a node u define (as a function of the state of u) the state vector as (j₀, ..., j_k), where j_s is the number of packets p in u with s_p = s.

The controller accepts a packet *p* in node *u* with state $(j_0, ..., j_k)$ iff:

$$\forall i, 0 \leq i \leq s_p : i < B - \sum_{s=i}^k j_s$$

If B > k then the above controller is a deadlock-free controller

Backward-state Controller:

Define the state vector as (*i*₀, ..., *i_k*), where *i_t* is the number of packets in node *u* that have made *t* hops.

The controller accepts a packet *p* in node *u* with state $(i_0, ..., i_k)$ iff:

$$\forall j, t_p \leq j \leq k : j > \sum_{t=0}^{j} i_t - B + k$$

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Forward-state versus Forward-count

- Forward-state controller is more liberal than the forward-count controller
- Every move allowed by the forward-count controller is also allowed by the forward-state controller