Routing Algorithms

CS60002: Distributed Systems

Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Main Features

- Table Computation
 - The routing tables must be computed when the network is initialized and must be brought up-to-date if the topology of the network changes
- Packet Forwarding
 - When a packet is to be sent through the network, it must be forwarded using the routing tables

Performance Issues

<u>Correctness</u> : The algorithm must deliver every packet to its ultimate destination

<u>Complexity</u> : The algorithm for the computation of the tables must use as few messages, time, and storage as possible

Efficiency : The algorithm must send packets through *good* paths

- <u>Robustness</u> : In the case of a topological change, the algorithm updates the routing tables appropriately
- *Fairness* : The algorithm must provide service to every user in the same degree

Good paths ...

<u>Minimum hop</u>: The cost of a path is the number of hops

<u>Shortest path</u>: Each channel has a non-negative cost – the path cost is the sum of the cost of the edges. Packets are routed along shortest paths.

<u>Minimum delay/congestion</u>: The bandwidth of a path is the minimum among the bandwidths of the channels on that path.

<u>Most robust path</u>: Given the probability of packet drops in each channel, packets are to be routed along the most reliable paths.

Destination-based Forwarding

// A packet with destination d was received or generated at node u
if d = u

then deliver the packet locally

else send the packet to *table_lookup_u(d*)

Floyd-Warshall Algorithm

begin

S = Φ; forall *u*, *v* do if *u* = *v* then *D*[*u*, *v*] = 0 else if $uv \in E$ then D[u, v] = $w_{u,v}$ else D[u, v] = ∞ ; while S \neq V do // Loop invariant: $\forall u, v$: $D[u, v] = d^{S}(u, v)$ begin pick *w* from V \ S; forall $u \in V$ do forall $v \in V$ do $D[u, v] = \min\{ D[u, v], D[u, w] + D[w, v] \}$ $S = S U \{ w \}$

end

end INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

The simple distributed algorithm

// For node u ...

var S_u : set of nodes;

D_u : array of weights;*Nb_u* : array of nodes;

begin

 $S_u = \Phi;$

forall $v \in V$ do

if v = u then begin $D_u[v] = 0$; $Nb_u[v] = udef$ end else if $v \in Neigh_u$ then begin $D_u[v] = w_{u,v}$; $Nb_u[v] = v$ end else begin $D_u[v] = \infty$; $Nb_u[v] = udef$ end;

The simple distributed algorithm contd...

```
while S_u \neq V do
            begin pick w from V \ S<sub>u</sub>; // All nodes must pick the same w
                        if u = w
                           then broadcast the table D<sub>w</sub>
                           else receive the table D<sub>w</sub>
                        forall v \in V do
                           if D_u[w] + D_w[v] < D_u[v] then
                           begin
                                     D_{\mu}[v] = D_{\mu}[w] + D_{w}[v];
                                     Nb_{\mu}[v] = Nb_{\mu}[w]
                           end;
                    S_{u} = S_{u} \cup \{w\}
            end
```

end

Important property of the simple algorithm

Let S and w be given and suppose that

(1) for all u, $D_u[w] = d^{S}(u, w)$ and

(2) if $d^{S}(u, w) < \infty$ and $u \neq w$, then $Nb_{u}[w]$ is the first channel of a shortest S-path to w

Then the directed graph $T_w = (V_w, E_w)$, where $(u \in V_w \Leftrightarrow D_u[w] < \infty)$ and $(ux \in E_w \Leftrightarrow (u \neq w \land Nb_u[w] = x))$ is a tree rooted towards *w*.

Toueg's improvement

- Toueg's observation:
 - A node *u* for which $D_u[w] = \infty$ at the start of the *w*-pivot round does not change its tables during the *w*-pivot round.
 - If $D_u[w] = \infty$ then $D_u[w] + D_w[v] < D_u[v]$ is false for every v.
 - Consequently, only the nodes that belong to T_w need to receive *w*'s table, and the broadcast operation can be done efficiently by sending the table D_w only via the channels that belong to the tree T_w

The Chandy-Misra Algorithm

var $D_u[v_0]$: weightinit ∞ ; $Nb_u[v_0]$: nodeinit udef;

For node v_0 only:

```
begin D_{v0}[v_0] = 0;
forall w \in Neigh_{v0} do send (mydist, v_0, 0) to w
```

end

Processing a (mydist, v_0 , d) message from neighbor w by u:

```
 \{ \langle mydist, v_0, d \rangle \in M_{wu} \} 
begin receive \langle mydist, v_0, d \rangle from w;
if d + \omega_{uw} < D_u[v_0] then
begin D_u[v_0] = d + \omega_{uw}; Nb_u[v_0] = w;
forall x \in Neigh_u do send \langle mydist, v_0, D_u[v_0] \rangle to x
end
```

end INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

The Netchange Algorithm

- Computes routing tables according to *minimum-hop* measure
- Assumptions:
 - N1: The nodes know the size of the network (*N*)
 - N2: The channels satisfy the FIFO assumption
 - N3: Nodes are notified of failures and repairs of their adjacent channels
 - N4: The cost of a path equals the number of channels in the path
- Requirements:
 - **R1.** If the topology of the network remains constant after a finite number of topological changes, then the algorithm terminates after a finite number of steps.
 - **R2.** When the algorithm terminates, the tables $Nb_u[v]$ satisfy
 - (a) if v = u then $Nb_u[v] = local$;
 - (b) if a path from u to v ≠ u exists then Nb_u[v] = w, where w is the first neighbor of u on a shortest path from u to v;
 - (c) if no path from u to v exists then $Nb_u[v] = udef$.

The Netchange Algorithm

var *Neigh_u* : set of nodes ;

- D_u : array of 0 ... N;
- *Nb_u* : array of nodes ;
- *ndis*_u : array of 0 .. N ;

// The neighbors of *u*

// D_u[v] estimates d(u,v)

- // Nb_u[v] is preferred neighbor for v
- // ndis_u[w, v] estimates d(w,v)

Initialization:

```
begin forall w \in Neigh_u, v \in V do ndis_u[w, v] = N;
forall v \in V do
begin D_u[v] = N; Nb_u[v] = udef end;
D_u[u] = 0; Nb_u[u] = local;
forall w \in Neigh_u do send \langle mydist, u, 0 \rangle to w
end
```

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

The Netchange Algorithm contd.

```
Procedure Recompute( v ):
           begin if v = u
                      then begin D_{\mu}[v] = 0; Nb_{\mu}[v] = local end
                      else begin
                                           // estimate distance to v
                                  d = 1 + \min\{ ndis_{ij}[w,v] : w \in Neigh_{ij} \};
                                  if d < N then
                                   begin D_{\mu}[v] = d;
                                             Nb_{,,}[v] = w with 1 + ndis_{,,}[w,v] = d
                                   end
                                  else begin D_{\mu}[v] = N; Nb_{\mu}[v] = udef end
                             end;
                      if D<sub>u</sub>[v] has changed then
                            forall x \in Neigh_{ii} do send (mydist, v, D_{ii}[v]) to x
           end
```

The Netchange Algorithm contd.

```
Processing a (mydist, v, d) message from neighbor w:

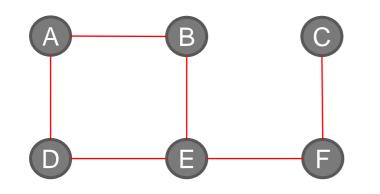
{ A (mydist, v, d) is at the head of Q_{wv} }

begin receive (mydist, v, d) from w;

ndis_u[w,v] = d; Recompute(v)

end
```

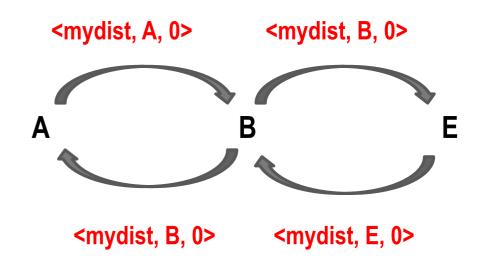
Upon failure of channel *uw*:


```
begin receive \langle fail, w \rangle; Neigh_u = Neigh_u \setminus \{w\};
forall v \in V do Recompute(v)
end
```

Upon repair of channel *uw*:

```
begin receive \langle repair, w \rangle; Neigh_u = Neigh_u \cup \{w\};
forall v \in V do
begin ndis_u[w,v] = N;
send \langle mydist, v, D_u[v] \rangle to w
end
end
```

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR


Let us observe how this network comes up.

- ndis_u [w,v] = N for all w in Neigh_u
- V = {A, B, C, D, E, F}
- $D_u[v] = N$ (shown as -), $Nb_u[v] = udef$, for all v in V
- $D_A[A] = D_B[B] = D_C[C] = D_D[D] = D_E[E] = D_F[F] = 0$
- Nb_A [A] = Nb_B [B] = Nb_C [C] = Nb_D [D] = Nb_E [E] = Nb_F [F]= local
- Every node u sends <mydist, u, 0> to all its neighbors.

Node Initialization:

 $\begin{array}{ll} Neigh_A = \{B, D\} & Neigh_D = \{A, E\} \\ Neigh_B = \{A, E\} & Neigh_E = \{B, D, F\} \\ Neigh_C = \{F\} & Neigh_F = \{C, E\} \end{array}$

After first exchange of messages- ROUND-1

			Α								В								С									D							Ε								F			
	Α	В	С	D	Ε	F			Α	E	3 (D	E	F		Α	В	С	D	E	EF			A		B	С	D	Ε	F		Α	В	С	D	E	F		Α		В	С	D	Ε	F
3	-	0			-	-		A	0	-	-	-	-	-	-									Α	0		-	-	-	-	-	В		0	-	-	-	-	С	-		-	0	-	-	-
)	-	-		0	-	-		E		1.		-	-	0	-	F	-	-	-	-	-	- C)	Ε			-	-		0	-	D	-	-	-	0	-	-	Ε	-	,	-	-	-	0	
																																F	-	-	-	-	-	0	1							
																		Re	CC	m	ou	tin	g f	or e	eac	:h r	nes	ssa	ge																	
D _A	0 1 - 1 - I B u D u						-	D B		0)	-	-	1	-	D _c	-	-	0	-	•	- 1		D _D	1	-	-	0	1	-		D _E	-	1	-	1	0	1	D) _F	-	-	1	-	1	0
N _A	I	В	u	D	u		u	N B			1	u	u	E	u	N _C	u	u	I	u	ι	ı F	:	N _D	Α	u	u	I	E	ι	1	N _E	u	В	u	D	1	F	N	I _F	u	u	С	u	E	1
					•						•				•				•		•									•			•													
			A	4								3							C	•								D							Ε							F	•			
	A		B	С	D	Ε	F			A	В	С	D	Ε	F		Α	E	3	C	D	Ε	F			A	В	С	D	Ε	F		Α	В	С	D	Ε	F		Α	E	B	С	D	Ε	F
В	1	(0	-	-	1	-	Α		0	1		1	-	-									Α		0	1	-	1	-		В	1	0	-	-	1		С	-	•	- (0	-	-	1
D	1		-	-	0	1	-	Ε		-	1		1	0	1	F	-	•	-	1	-	1	0	Ε		-	1	-	1	0	1	D	1	-	-	0	1		Ε	-	1	1	-	1	0	1
																													F	-	-	1	-	1	0											

ROUND 2:

			Α								В							С									D							Ε							F			
	Α	В	C	D	Ε	F			Α	В	С	D	Ε	F		Α	В	C)	E	F		A	A	В	С	D	Ε	F		Α	В	С	D	Ε	F		Α	E	3 C) C) E	F
3	1	0	-	-	1	-	A	A	0	1	-	1	-	-									Α	C)	1	-	1		-	В	1	0	-	-	1	-	С	-	-) -	•	1
)	1	-	-	0	1	-	E		-	1	-	1	0	1	F	-	-	1	·	•	1	0	Ε	-	•	1	-	1	0	1	D	1	-	-	0	1	-	Ε		1		. 1		1
																															F	-	-	1	-	1	0							
																	Re	eco	om	pu	ıtir	ıg	for	ead	ch i	me	ssa	ge																
D _A	0	1	-	1	2		-	D B	1	0	-	2	1	2	D	-	-	0)	-	2	1	D _D	1	2	-	() 1	2		D _E	2	1	2	1	0	1	D	F	2	! 1	2	2 1	0
N _A	1	В	u	D	В	ι	r	N B	Α	I	u	A	E	E	N	u	u	I		u	F	F	N _D	Α	Α	u		E	E		N _E	В	В	F	D	I	F	N	F U	E	C	; E	E	
			-			-				-		-		-			-	-	-	-	-		_	-	-		-		-				-		-			-		-	-	-	-	-
			ł	4							В							(С								D							Ε							F			
	A A B C D E		F		Α		В	С	D	E	F	A		В	С	D	Ε	F			Α	В	С	D	Ε	F		Α	В	С	D	Ε	F		Α	В	С	D	Ε	F				
B	1		0	-	2	1	2	Α	0		1	-	1	2	-								Α		0	1		1	2	-	В	1	0	-	2	1	2	С		-	0		2	1
D	1		2	-	0	1	2	Е	2		1	2	1	0	1 F	-		2	1	2	1	0	Ε		2	1	2	1	0	1	D	1	2	-	0	1	2	Ε	2	1	2	1	0	1
																															F	-	2	1	2	1	0							
			-						-		-																																	

ROUND 3:

			A		-						B							С	_	-					-	D							Ε							F		_	
	Α	В	С	D	Ε	F			Α	В	С	D	Ε	F		Α	В	С	D	Ε	F			Α	В	С	D	Ε	F		Α	В	С	D	Ε	F		Α	B	C	D	Ε	F
3	1	0		2	1	2	A	4	0	1	-	1	2	-				_		_		Α		0	1	-	1	2	-	В	1	0	-	2	1	2	С	-	-	0	-	2	1
)	1	2	-	0	1	2	E		2	1	2	1	0	1	F	-	2	1	2	1	0	E		2	1	2	1	0	1	D	1	2	-	0	1	2	Ε	2	1	2	1	0	1
																														F		2	1	2	1	0							
																	Re	co	mp	out	ing	foi	r ea	ach	me	ssa	ige																
D _A	0	1	-	1	2		3	D B	1	0	3	2	1	2	D _c	-	3	0	3	2	1	D	D	1	2	3	0 1	2	2	D _E	2	1	2	1	0	1	D	F 3	2	1	2	1	0
N _A	Ι	В	u	D	В	E	В	N B	Α	I	E	Α	E	Ε	N _c	u	F	I	F	F	F	N	D	A	A	E	IE	E		N _E	В	В	F	D	I	F	N	FE	E	С	E	E	I
	B																						•	•						•	•		•		•	•			•		•	•	
			Å	١							В							С	7							D							Ε							F			
	A		B	С	D	E	F		Α		B	C	DE	EF	=	Α	E	3 0		D	EI	F		Α	В	С	D	Ε	F		Α	В	С	D	Ε	F		Α	В	С	D	Ε	F
В	1		0	3	2	1	2	A	0		1	-	1 2	2	3								A	0	1	-	1	2	3	В	1	0	3	2	1	2	С	-	3	0	3	2	1
D	1		2	3	0	1	2	Е	2		1	2	1 () ^	F	3		2	1 2	2 [,]	1 (0	Ε	2	1	2	1	0	1	D	1	2	3	0	1	2	Ε	2	1	2	1	0	1
																														F	3	2	1	2	1	0							

ROUND 4:

			Α								B							С								D							Ε							F			
	Α	В	С	D	Ε	F			Α	В	С	D	Ε	F		Α	В	С	D	Ε	F			4	В	С	D	Ε	F		Α	В	С	D	Ε	F		Α	В	С	D	Ε	F
3	1	0	3	2	1	2	4	4	0	1	-	1	2	3								Α	(0	1	-	1	2	3	В	1	0	3	2	1	2	С		3	0	3	2	1
)	1	2	3	0	1	2	E	E	2	1	2	1	0	1	F	3	2	1	2	1	0	Ε		2	1	2	1	0	1	D	1	2	3	0	1	2	Ε	2	1	2	1	0	1
																														F	3	2	1	2	1	0							
																	Re	CO	mp	out	ing	for	ea	ch I	ne	ssa	ge																
D _A	0	1	4	1	2		3	D B	1	0	3	2	1	2	Do	4	3	0	3	2	1	D _D	1	2	3	5 C	1	2		D _E	2	1	2	1	0	1	D _F	3	2	1	2	1	0
N _A	1	В	В	D	В		В	N B	A	I	E	A	E	E	Nc	F	F	I	F	F	F	N _D	Α	A	E	I	E	E		N _E	В	В	F	D	I	F	N _F	E	E	C	E	E	I
N _A I B B D B B A A I E A E E N _C F F I F															<u>.</u>			1						<u> </u>	1	1	I							1									
				4							В							С	, 7							D							Ε							F			
	A	A B C D E		Ε	F		A		B	C	D	E	F	Α	E	3 (C I	D	EI	F		Α	В	С	D	Ε	F		Α	В	С	D	Ε	F		Α	В	С	D	Ε	F		
E	3 1	I	0	3	2	1	2	A	0		1	-	1	2 3	3							A		0	1	-	1	2	3	В	1	0	3	2	1	2	С	-	3	0	3	2	1
C) 1		2	3	0	1	2	Ε	2	2	1	2	1 (0	- F 1	3		2	1 1	2 '	1 (0 E		2	1	2	1	0	1	D	1	2	3	0	1	2	Ε	2	1	2	1	0	1
																														F	3	2	1	2	1	0							
		<u> </u>														-		•																				I					

ROUND 5:

			Α							В								С							D							Ε							F			
	Α	В	С	D	Ε	F		Α	В	С	D	E	F	=	A		B	С	D	Ε	F		Α	В	С	D	Ε	F		Α	В	С	D	Ε	F		Α	В	С	D	Ε	F
В	1	0	3	2	1	2	Α	0	1	4	1	2							•			Α	0	1	4	1	2	3	В	1	0	3	2	1	2	С	4	3	0	3	2	1
D	1	2	3	0	1	2	Ε	2	1	2	1	0		F	3	3 2	2	1	2	1	0	Ε	2	1	2	1	0	1	D	1	2	3	0	1	2	Ε	2	1	2	1	0	1
																													F	3	2	1	2	1	0							

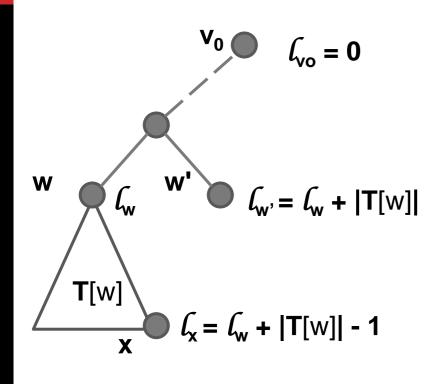
Routing with Compact Routing Tables

- The algorithms studied require each node to maintain a routing table with an entry for each possible destination.
 - How many destinations can there be?
- Is there a way to reorganize the routing tables and still remember which channel caters to which destinations?
 - Indexing the routing table by channel.
 - Each channel of the node has an entry informing which destinations must be routed via that channel.

Tree-Labeling Scheme

 $Z_N = \{ 0, 1, ..., N-1 \}$

Cyclic Intervals


The cyclic interval [a,b) in Z_N is the set of integers defined by:

$$[a, b) = \begin{cases} \{a, a+1, \dots, b-1\} & \text{if } a < b \\ \{0, \dots, b-1, a, \dots, N-1\} & \text{if } a \ge b \end{cases}$$

• [a,a) = Z_N

- The *compliment* of [a,b) is [b,a) when $a \neq b$
- The cyclic interval [a,b) is called *linear* if a < b.

Tree-Labeling Scheme

- The nodes of a tree *T* can be numbered such that
 - For each outgoing channel of each node, the set of destinations that must be routed via that channel is a *cyclic interval*.
- Let v_0 be the root of the tree.
- For each node *w* let T[*w*] denote the subtree of T rooted at w
- Number the nodes in the tree such that for each *w* the numbers assigned to the nodes in T[w] form a *linear interval*.
- Let $[a_w, b_w]$ denote the interval assigned to nodes in T[w].
- Node *w* forwards to a son *u* packets with destinations in T[u], with labels in [a_u, b_u)
- Node w forwards to a father packets with destinations not in T[u], with labels in $Z_N (a_w, b_w) = (b_w, a_w)$

Tree-Labeling Scheme

```
Procedure for Interval Forwarding (for node u) :
```

```
if d = I_u
```

then deliver the packet locally else begin

```
select \alpha_i s.t d \in [\alpha_i, \alpha_{i+1}];
```

send packet via the channel labeled with α_i

end;

- Representing a single interval requires 2 log N bits
- A node u has many intervals at the node.
- Only the start point of the interval for a channel is stored; the end point being the next begin point of an interval at the same node.
- At node u, the begin point of the interval for channel *uw* is given by:

$$\alpha_{uw} = \begin{cases} I_w & \text{if w is a son of u} \\ I_u + |T[u]| & \text{if w is the father of u} \end{cases}$$

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR