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Definitions 
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 Two processes, p and q, each sending an infinite array of words to the other 

 

 For Process p: 

 inp :  An infinite array of words to be sent to process q 

 

 outp :  An infinite array of words being received from process q 

 Initially for all i, outp[i] = udef 

 

 sp : The lowest numbered word that p still expects to receive from q 

 

 At any time, p has already written outp[0] through outp[sp  1] 



Required Properties 
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 Safe delivery: 

– In every reachable configuration of the protocol 

  outp[0 … sp – 1] = inq[0 … sp – 1]  and 

  outq[0 … sq – 1] = inp[0 … sq – 1]  

 

 Eventual delivery: 

– For every integer k  0, a configuration with sp  k and sq  k is eventually 

reached  

 



The protocol 
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 The packet, < pack, w, i > , transmits the word w = inp[ i ] to q. 

 

 The processes use constants lp and lq as follows: 
 

– Process p can send the word w = inp[ i ] (as the packet, < pack, w, i > ) only after 

storing all the words outp[0] through outp[ i – lp ], that is, i < sp + lp. 

 

– When p receives < pack, w, i >, retransmission of words from inp[0] through  

    inp[ i – lq ] is no longer necessary.  

 

 



The Sliding Windows 
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The Protocol 
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Sp:  { ap  i < sp + lp } 

   begin send < pack, inp[i], i > to q end 

Rp: { < pack, w, i >  Qp } 

    begin receive < pack, w, i > ; 

  if outp[i] = udef  then 

  begin outp[i] = w ; 

              ap = max{ ap, i – lq + 1 }; 

              sp = min{ j | outp[j] = udef } 

  end 

  // else ignore – retransmission 

     end 

Lp: { < pack, w, i >  Qp } 

     begin  Qp =  Qp \ { < pack, w, i > } end  
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Protocol Invariant 
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 P           i < sp : outp[i]  udef  

    i < sq : outq[i]  udef  

     < pack, w, i >  Qp     w = inq[i]      ( i < sq + lq )  

     < pack, w, i >  Qq     w = inp[i]      ( i < sp + lp )  

     outp[i]  udef     outp[i] = inq[i]    ( ap > i – lq )  

     outq[i]  udef     outq[i] = inp[i]    ( aq > i – lp )  

     ap  sq 

     aq  sp 

 

 

 



Results 
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Safety:  The protocol satisfies the requirement of safe delivery 

 

Liveness: 
 

• P implies sp – lq  ap  sq  aq + lp  sp + lp 

• P implies that the sending of <pack, inp[sq], sq> by p or the sending of  

     <pack, inq[sp], sp> by q is applicable. 

– Hence no deadlock is possible 

• The protocol satisfies the requirement of eventual delivery 


