
The Balanced Sliding Window Protocol

CS60002: Distributed Systems

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

Pallab Dasgupta

Professor,

Dept. of Computer Sc. & Engg.,

Indian Institute of Technology Kharagpur

Definitions

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

 Two processes, p and q, each sending an infinite array of words to the other

 For Process p:

 inp : An infinite array of words to be sent to process q

 outp : An infinite array of words being received from process q

 Initially for all i, outp[i] = udef

 sp : The lowest numbered word that p still expects to receive from q

 At any time, p has already written outp[0] through outp[sp  1]

Required Properties

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3

 Safe delivery:

– In every reachable configuration of the protocol

 outp[0 … sp – 1] = inq[0 … sp – 1] and

 outq[0 … sq – 1] = inp[0 … sq – 1]

 Eventual delivery:

– For every integer k  0, a configuration with sp  k and sq  k is eventually

reached

The protocol

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

 The packet, < pack, w, i > , transmits the word w = inp[i] to q.

 The processes use constants lp and lq as follows:

– Process p can send the word w = inp[i] (as the packet, < pack, w, i >) only after

storing all the words outp[0] through outp[i – lp], that is, i < sp + lp.

– When p receives < pack, w, i >, retransmission of words from inp[0] through

 inp[i – lq] is no longer necessary.

The Sliding Windows

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5

p

A A A S S S S inp

W W W W W W u u R R u outp

q

 A A S S S S inq

W W W W u R R u u u outq

Qq

Qp

sp

ap
sp + lp aq

sq + lq

sq

The Protocol

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6

Sp: { ap  i < sp + lp }

 begin send < pack, inp[i], i > to q end

Rp: { < pack, w, i >  Qp }

 begin receive < pack, w, i > ;

 if outp[i] = udef then

 begin outp[i] = w ;

 ap = max{ ap, i – lq + 1 };

 sp = min{ j | outp[j] = udef }

 end

 // else ignore – retransmission

 end

Lp: { < pack, w, i >  Qp }

 begin Qp = Qp \ { < pack, w, i > } end

p

 A A A S S S S

 W W W W W W u u R R u

sp

ap
sp + lp

inp

outp

Protocol Invariant

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 7

 P  i < sp : outp[i]  udef

  i < sq : outq[i]  udef

  < pack, w, i >  Qp  w = inq[i]  (i < sq + lq)

  < pack, w, i >  Qq  w = inp[i]  (i < sp + lp)

  outp[i]  udef  outp[i] = inq[i]  (ap > i – lq)

  outq[i]  udef  outq[i] = inp[i]  (aq > i – lp)

  ap  sq

  aq  sp

Results

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 8

Safety: The protocol satisfies the requirement of safe delivery

Liveness:

• P implies sp – lq  ap  sq  aq + lp  sp + lp

• P implies that the sending of <pack, inp[sq], sq> by p or the sending of

 <pack, inq[sp], sp> by q is applicable.

– Hence no deadlock is possible

• The protocol satisfies the requirement of eventual delivery

