The Balanced Sliding Window Protocol

CS60002: Distributed Systems

Pallab Dasgupta Professor, Dept. of Computer Sc. & Engg., Indian Institute of Technology Kharagpur

Definitions

- Two processes, p and q, each sending an infinite array of words to the other
- For Process p:

 in_p : An infinite array of words to be sent to process q

- s_p : The lowest numbered word that p still expects to receive from q

At any time, p has already written $out_p[0]$ through $out_p[s_p - 1]$

Required Properties

- Safe delivery:
 - In every reachable configuration of the protocol

 $out_p[0 \dots s_p - 1] = in_q[0 \dots s_p - 1]$ and $out_q[0 \dots s_q - 1] = in_p[0 \dots s_q - 1]$

- Eventual delivery:
 - For every integer $k \ge 0$, a configuration with $s_p \ge k$ and $s_q \ge k$ is eventually reached

The protocol

- The packet, < pack, w, i > , transmits the word w = $in_p[i]$ to q.
- The processes use constants I_p and I_q as follows:
 - Process *p* can send the word $w = in_p[i]$ (as the packet, < pack, *w*, *i* >) only after storing all the words $out_p[0]$ through $out_p[i I_p]$, that is, $i < s_p + I_p$.
 - When *p* receives < pack, *w*, *i* >, retransmission of words from $in_p[0]$ through $in_p[i l_q]$ is no longer necessary.

The Sliding Windows

The Protocol

S_p: { $a_p \le i < s_p + l_p$ } begin send < pack, $in_p[i]$, i > to q end R_{p} : { < pack, w, i > $\in \mathbf{Q}_{\mathsf{p}}$ } begin receive < pack, w, i >; if $out_p[i] = udef$ then **begin** $out_p[i] = w$; $a_p = max\{a_p, i - l_q + 1\};$ $s_p = min\{j \mid out_p[j] = udef\}$ end

// else ignore – *retransmission*

end

$$-p: \{ < pack, w, i > \in Q_p \}$$

begin $Q_p = Q_p \setminus \{ < pack, w, i > \}$ end

Protocol Invariant

$$P = \forall i < s_p : out_p[i] \neq udef$$

$$\land \forall i < s_q : out_q[i] \neq udef$$

$$\land < pack, w, i > \in Q_p \Rightarrow w = in_q[i] \land (i < s_q + l_q)$$

$$\land < pack, w, i > \in Q_q \Rightarrow w = in_p[i] \land (i < s_p + l_p)$$

$$\land out_p[i] \neq udef \Rightarrow out_p[i] = in_q[i] \land (a_p > i - l_q)$$

$$\land out_q[i] \neq udef \Rightarrow out_q[i] = in_p[i] \land (a_q > i - l_p)$$

$$\land a_p \leq s_q$$

$$\land a_q \leq s_p$$

Results

<u>Safety</u>: The protocol satisfies the requirement of safe delivery

Liveness:

- Pimplies $s_p I_q \le a_p \le s_q \le a_q + I_p \le s_p + I_p$
- P implies that the sending of <pack, in_p[s_q], s_q> by p or the sending of<pack, in_q[s_p], s_p> by q is applicable.
 - Hence no deadlock is possible
- The protocol satisfies the requirement of eventual delivery