
The Google File System (GFS) 

CS60002: Distributed Systems 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
 

Antonio Bruto da Costa 

Ph.D. Student, Formal Methods Lab, 

Dept. of Computer Sc. & Engg., 

Indian Institute of Technology Kharagpur 



Design constraints 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
 

 Motivating application: Google 

 Component failures are the norm 

 1000s of components: inexpensive servers and clients 

 Bugs, human errors, failures of memory, disk, connectors, networking, and power 

supplies 

 Constant monitoring, error detection, fault tolerance, automatic recovery are 

integral to the system 

 Files are huge by traditional standards 

 Multi-GB files are common; each file contains application objects such as web 

documents 

 Billions of objects 



Design constraints 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
 

 Most modifications are appends 

 Random writes are practically nonexistent 

 Many files are written once, and read sequentially 

 Types of reads 

 Data Analysis Programs reading large repositories 

 Large streaming reads (read once) 

 Small random reads (in the forward direction) 

 Sustained bandwidth more important than latency 



Interface Design 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4
 

 Familiar file system interface 

 Create, delete, open, close, read, write 

 Files are organized hierarchically in directories and identified by path 

names 

 Additional operations 

 Snapshot (for cloning files or directories) 

 Record append by multiple clients concurrently guaranteeing atomicity 

but without locking 



Architectural Design 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5
 

 A GFS cluster 

 A single master 

 Multiple chunkservers per master 

 Accessed by multiple clients 

 Running on commodity Linux machines 

 A file 

 Represented as fixed-sized chunks 

 Labeled with 64-bit unique and immutable global IDs 

 Stored at chunkservers on local disks as linux files 

 Replicated across chunkservers for reliability 



GFS Architecture 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6
 

 



INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 7
 

 Master server 

 Maintains all metadata 

 Name space, access control, file-to-chunk mappings 

 Chunk lease management 

 Garbage collection, chunk migration 

 Sending Heartbeat messages to chunk servers 

 Giving instructions; Collection of state information 



INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 8
 

 GFS clients 

 Linked to applications 

 Communicates with master and chunkservers on behalf of the client 

 Consult master for metadata 

 Access data from chunkservers 

 No caching of file data at clients and chunkservers 

 Streaming reads and append writes do not benefit from caching 



Single-Master Design 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9
 

 Can use global knowledge to devise efficient decisions for chunk 

placement and replication 

 Clients ask Master which chunkserver it should contact 

 This information is cached at the client for some time 

 A client typically asks for multiple chunk locations in a single request 

 The master proactively provides chunk locations immediately following 

those requested 

 Reduces future interactions at no cost 



Chunk Size 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
0

 

 64 MB; much larger than typical file system block size 

 Fewer chunk location requests to the master 

 Good for applications that mostly read and write large files sequentially 

 Reduced network overhead to access a chunk 

 May keep a persistent TCP connection for some time 

 Fewer metadata entries 

 Kept in memory 

 Some potential problems with fragmentation 



Metadata 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
1

 

 Three major types 

 File and chunk namespaces 

 File-to-chunk mappings 

 Locations of a chunk’s replicas 

 All kept in memory 

 The first two metadata are also kept persistent 

 Quick global scans 

 Garbage collections 

 Reorganizations for chunk failures, balancing load and better disk 

space utilization. 

 64 bytes per 64 MB of data 



Chunk Locations 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
2

 

 No persistent states 

 Polls chunkservers at startup 

 Use heartbeat messages to monitor chunk servers thereafter 

 On-demand approach vs. coordination 

 On-demand wins when changes (failures) are often  

 Chunkservers join and leave a cluster 

 Chunkservers may change names, fail or restart 

 Changes happen often with a cluster having hundreds of 

servers 



Operation Logs 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
3

 

 Metadata updates are logged 

 e.g., <old value, new value> pairs 

 Log replicated on remote machines 

 Files and chunks, and their versions are also identified by the logical times 

at which they are created 

 Take global snapshots (checkpoints) to truncate logs 

 Recovery 

 Latest checkpoint + subsequent log files 



System Interactions 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
4

 

 The master grants a chunk lease to a replica, called the primary 

 The primary picks a serial order for all mutations to the chunk 

 A mutation is an operation that changes the contents or the metadata of a chunk 

 Write or append operation 

 The replica holding the lease determines the order of updates to all replicas 

 Lease 

 60 second timeouts 

 Can be extended indefinitely by the primary as long as the chunk is being 

changed 

 Extension request are piggybacked on heartbeat messages 

 After a timeout expires, the master can grant new leases 



Write Process 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
5

 



Consistency Model 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
6

 

 Changes to namespace (i.e., metadata) are atomic 

 Done by single master server 

 Master uses log to define global total order of namespacechanging 

operations 

 Data changes more complicated 

 File region is consistent if all clients see as same, regardless of replicas 

they read from 

 File region is defined after data mutation if it is consistent, and all clients 

see that entire mutation 



INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
7

 

 Serial writes guarantee region is defined and consistent 

 But multiple writes from the same client may be interleaved or overwritten 

by concurrent operations from other clients 

 Consistent but not defined 

 Record append completes at least once, at offset of GFS’ choosing 

 Application must cope with this semantics, and possible duplicates 



Data Flow 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
8

 

 Separation of control and data flows 

 Avoid network bottleneck 

 Control flows from the client to the primary and then to all secondaries 

 Data are pushed linearly among chain of chunkservers having replicas 

 Each machine forwards data to its closest machine which has not 

received it 

 Pipelined transfers using a switched networks with full duplex links 



Master Operations 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
9

 

 Namespace management with locking 

 Replica creation, re-replication 

 Garbage Collection 

 Stale chunk detection 



Locking Operations 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
0

 

 Many master operations can be time consuming 

 Allow multiple master operations and use locks over regions of the namespace 

 GFS does not have a per directory data structure 

 GFS does not allow hard or symbolic links 

 Represents namespace as a lookup table mapping full pathnames to metadata. 

 A lock per path 

 To access /d1/d2/leaf, need to lock /d1, /d1/d2, and /d1/d2/leaf 

 Can modify a directory concurrently 

 Each thread acquires a read lock on a directory and a write lock on a file 

 Totally ordered (first by level and lexicographically in the same level) locking to 

prevent deadlocks 



Replica Placement 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
1

 

 Goals: 

 Maximize data reliability and availability 

 Maximize network bandwidth 

 Need to spread chunk replicas across machines and racks 

 Guards against disk or machine failures (different machines) 

 Guards against network switch failures (different racks) 

 Utilizes aggregate network bandwidth for read operations 

 Write traffic has to flow through different racks 

 Higher priority to replica chunks with lower replication factors 

 Limited resources spent on replication 



Replica creation, re-replication 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
2

 

 Creation of empty replicas 

 Placement in servers with below average disk utilization 

 Limit recent creation on the same server 

 Spread replicas across racks 

 Re-replication 

 Server becomes unavailable or corrupted 

 Re-replicate chunks with some priority 

 Chunks having one replica 

 Chunks with live usage with running applications 

 Master is involved only in picking up a high priority chunk and then instructs 

a suitable server for cloning directly from the valid replica 



Garbage Collection 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
3

 

 Deleted files are marked and hidden for three days 

 Then they are garbage collected 

 Master deletes the metadata for the deleted file 

 Server identifies the set of deleted chunks during regular heartbeat messages 

 Server deletes its deletes replicas of chunks 

 Combined with other background operations (regular scans of namespaces or 
handshakes with servers) 

 Done in batches and thus the cost is amortized 

 Simpler than eager deletion due to 

 Unfinished replicated creation 

 Lost deletion messages 

 Safety net against accidental irreversible deletions 



Fault Tolerance and Diagnosis 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
4

 

 Fast recovery 

 Master and chunkserver are designed to restore their states and start in seconds 
regardless of termination conditions 

 No distinction between normal and abnormal termination 

 Chunk replication 

 Master replication 

 Master state is replicated on multiple machines 

 Operation log and checkpoints are replicated 

 Commit to a mutation happens after flushing logs to all replicas 

 Infrastucture outside GFS starts a new master on failure 

 Clients use a canonical name which is a DNC-alias for a server 

 Shadow masters provide read-only access when the primary master is down 



Fault Tolerance: Data Integrity 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
5

 

 A chunk is divided into 64-KB blocks having 32bit  checksum 

 Each chunkserver uses checksum to detect corruption of stored data 

 Verified at read and write times 

 Chunkserver returns error to the requestor and reports the error to 

master 

 Master creates a new replica and instructs to the server to delete 

its chunk 

 Checksum has little performance overhead on read operations and on 

record append operations 

 Chunkservers employ background scans for rarely used chunks 



GFS: Summary 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
6

 

 Success: used actively by Google to support search service and other applications 

 Availability and recoverability on cheap hardware 

 High throughput by decoupling control and data 

 Supports massive data sets and concurrent appends 

 Semantics not transparent to apps 

 Must verify file contents to avoid inconsistent regions, repeated appends (at-least-

once semantics) 

 Performance not good for all apps 


