
Distributed File Systems

CS60002: Distributed Systems

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

Antonio Bruto da Costa

Ph.D. Student, Formal Methods Lab,

Dept. of Computer Sc. & Engg.,

Indian Institute of Technology Kharagpur

What is a Distributed File System

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

• DFS: distributed implementation of a file system

• Files, file servers, and users are all dispersed around the network

• Main Goal: DFS should look like a centralized file system to a user

• Ability to open and update any file on any machine on the network

• Ability to share files, the same as shared local files

DESIGN GOALS

• Network Transparency

• High Availability

• Scalability

• Concurrency

Design Goals

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3

 Network transparency

 Same set of file operations for both local and remote files

 Uniform naming scheme for local and remote files

 Similar access time for local and remote files

 High availability

 Files should not become unavailable for “small” failures

 Scalability

 No. of users, file servers, files handled etc.

 Concurrency

 Handle concurrent access by different clients in the network

DFS Architecture

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

 Client Server Architecture

 Network File System (NFS)

 Cluster Based Architecture

 Google File System

Design Issues : Naming Schemes

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5

 Files named by combination of host name and local name

 Not location transparent

 Single global namespace spanning all files

 Location transparent

 All systems see the same directory structure

 A server crash affects all machines

 Example: Andrew File System (AFS)

DNS Names

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6

 Mount remote directories to local directories

 Location transparent

 Directory structure seen by different machines possibly different

 Mount only when needed, what is needed

 Mounted remote directories can be accessed transparently

 Example: Network File System (NFS)

Mounting Remote Directories (An Example: NFS)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 7

Pathname Translation

 Consider /remote/vu/mbox in A

 /remote/vu looked up in A the usual way

 Low level entry for vu contains information that it is actually /users/steen in

server

 Request sent to server to look up /users/steen/mbox

 What if the name crosses multiple machine boundaries?

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 8

Caching to Improve Performance

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

 Reduce network traffic by retaining recently accessed disk blocks in local

cache

 Repeated accesses to the same information can be handled locally from

the cached copy

 If data accessed not in cache, copy of data brought from the server to the

local cache

 Copies of parts of file may be scattered in different caches.

 Cache-consistency problem – keeping the cached copies consistent with

the master file in the presence of write operations

Design Issue: Caching

 Cache location

 Granularity of cached data

 Update policy

 Cache consistency

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
0

Cache Location

 In client memory

 Faster access

 Good when local usage is transient

 Enables diskless workstations

 On client disk

 Good when local usage dominates

 Can cache larger files

 Helps protect clients from server crashes

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
1

Granularity of Cached Data

 Whole file

 Easier to maintain consistency

 High transfer time, specially if only a small part of the file is accessed

 One or more blocks

 Low transfer time, transfer as and when needed

 More complex consistency issues

 In general, increasing granularity means higher chance of finding next

accessed data, but also higher transfer time

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
2

Cache Update Policies

 When is cached data at the client updated in the master file?

 Write-through – write data through to disk when cache is updated

 Reliable, but poor performance

 Delayed-write – cache and then write to the server later

 Write operations complete quickly; some data may be overwritten in cache,
saving needless network I/O

 Poor reliability

 Unwritten data may be lost when client machine crashes

 Inconsistent data

 Variation – write dirty blocks back at regular intervals

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
3

Cache Consistency

 Is locally cached copy of the data consistent with the master copy?

 Client-initiated approach

 Client initiates a validity check with server

 Server verifies local data with the master copy

 Can use timestamps, version no….

 Server-initiated approach

 Server records (parts of) files cached in each client

 When server detects a potential inconsistency, it invalidates the client

caches

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
4

Sharing Semantics in DFS

 Unix Semantics

 Read after write

 Every change becomes instantly visible to all processes

 Session Semantics

 Same as unix semantics for local clients of a file

 For remote clients, changes to a file are initially visible to the process that

modified the file. Only when the file is closed, the changes are visible to

other processes.

 Immutable files

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
5

Stateless vs Stateful Service

 Stateless service

 No open and close calls to access files

 Each request identifies the file and position in file

 No client state information in server by making each request self-contained

 Advantages

 Better failure recovery

 Disadvantage

 Longer request messages, longer processing time

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
6

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
7

 Stateful Service

 Client opens a file

 Server fetches information about file from disk, stores in server memory

 Returns to client a connection identifier unique to client and open file

 Identifier used for subsequent accesses until session ends

 Server must reclaim space used by no longer active clients

 Advantages

 Increased performance; fewer disk accesses

 Disadvantages

 Poor failure recovery

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Network File System (NFS)

1
8

CS60002: Distributed Systems

Antonio Bruto da Costa

Ph.D. Student, Formal Methods Lab,

Dept. of Computer Sc. & Engg.,

Indian Institute of Technology Kharagpur

Main Idea

 Server exports parts of a filesystem to clients (Ex. specified in /etc/exports file

in Linux)

 Clients “mount” server exported namespace at specific mount points in its

namespace tree (specified in /etc/fstab in Linux; can be mounted separately by

mount command also)

 Same server filesystem can be mounted at different mount points at different

clients, so no single global name space

 Mounts can be cascaded

 But client must mount from different servers explicitly itself

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
9

Nested Mounting (NFS v3)

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
0

Basic NFS Architecture

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
1

Other details

 Location transparent naming (host id needed only during mount)

 Pathname translation

 Look up each component in the pathname recursively

 Lookup call made to server when a mount point is crossed

 Cascading mounts can involve multiple servers during translation

 Set of operations provided for operations on files

 Lookup, read, write, mkdir, rename, rmdir, readdir, getattr, setattr…

 No open or close calls (stateless server)

 Most data-modifying calls are synchronous

 Most calls work on an opaque (to client) file handle returned to the client by the server

 Uniquely identifies the file in the server

 RPC (Remote Procedure Call) used to communicate between server and client

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
2

Caching in NFSv3

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
3

 Strictly not part of NFS protocol, but used in practice for performance

 File attributes cached along with file block.

 Cached file block used subject to consistency checks on file attributes

 8 Kb blocks for v2, negotiable for v3

 No locking, no synchronization as part of NFS

 Separate centralized locking mechanism using lockd

 No clear semantics because of caching nature

NFS v4 Improvements

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
4

 Improved access and good performance on the Internet

 Transit across firewalls, perform well in high latency low bandwidth

scenarios, scale to very large numbers of clients per server

 Strong security with negotiation built into the protocol.

 Supports the RPCSEC_GSS protocol, provides a mechanism for clients

and servers to negotiate security parameters, requires clients and servers

to support a minimal set of security schemes

 Good cross-platform interoperability

NFS v4: COMPOUND Operation

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
5

 Allows building more complex requests by combining one or more traditional

NFS procedures

 Example: read data from a file in one request by combining LOOKUP, OPEN,

and READ operations in a single COMPOUND RPC.

 Reduces the number of RPCs needed for logical file system operations

 The operations combined within a COMPOUND request are evaluated in order

by the server. Once an operation returns a failing result, the evaluation ends

and the results of all evaluated operations are returned to the client

 Still uses filehandle as the id of the file. Passes a filehandle from one operation

to another within the sequence of operations

NFS v4: Open and Close

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
6

 The NFS version 4 protocol introduces OPEN and CLOSE operations

 Stateful model

 The OPEN operation provides a single point where file lookup, creation, and

share semantics can be combined

 The CLOSE operation also provides for the release of state accumulated by

OPEN.

NFS v4: Locking

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
7

 Locking

 No separate lock manager as in v3

 Lease based locking model as part of NFS

 State associated with file locks maintained at the server

NFS v4: Caching

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
8

 The client checks validity of cached file data when the file is opened

 Checks with server if the file has been changed

 Based on this, the client determines if the cached file data should kept or

released

 When the file is closed, any modified data is written to the server

 Serializing access to file data can be done through locking

NFS v4: Open Delegation

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
9

 Server can delegate some responsibilities to the client for a file

 At OPEN, the server may provide the client either a read or write delegation for

the file

 Assures certain semantics to the client

 If the client is granted an open delegation, the client machine can locally

handle open and close operations from other clients in the same machine.

 Allows the client to locally service operations such as OPEN, CLOSE, LOCK,

LOCKU, READ, WRITE without immediate interaction with the server

NFS v4: Recalling Delegation

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
0

 Delegations can be recalled by the server

 If another client requests access to the file such that the access conflicts with

the granted delegation, the server can recall the delegation from initial client

 Problems with delegation and stateful servers

 Failure handling

NFS v4: Replication

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
1

 locations attribute at server can store the location of a file system

 If a file system is migrated in between, the client will receive an error when

operating on the file system

 The client can then probe the server query for the new file system location.

 The attribute can also hold multiple server locations to allow replication of file

systems

 Client can use its own policies to access one of the replicas

NFS v4: Security

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3
2

 Use of RPCSEC_GSS

 Security framework to support multiple ways of setting up secure channels

 Supports message integrity and confidentiality

 Should be configured with Kerberos

 Support for authentication

 It must also support a method LIPKEY

 LIPKEY is a public key system

 Clients are authenticated using passwords

 Servers are authenticated using a public key

