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CS60002: Distributed Systems 

Self-Stabilization 



Definition of self-stabilization 

A system S is self-stabilizing with respect to predicate P 

if it satisfies the following two properties: 

 

 Closure:   P is closed under the execution of S. That is, once P is established in S, it 

cannot be falsified. 

 

 Convergence:   Starting from an arbitrary global state, S is guaranteed to reach a 

global state satisfying P within a finite number of state transitions. 
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Definition of stabilization 

[Arora and Gouda] We define stabilization for system S with respect to two predicates P  

and Q, over its set of global states.  

    Predicate Q denotes a restricted start condition. S satisfies Q  P (read as Q 

 stabilizes to P) if it satisfies the following two properties: 

 

–  Closure: P is closed under the execution of S. That is, once P is established in S, 

it cannot be falsified. 

 

–  Convergence: If S starts from any global state that satisfies Q, then S is 

guaranteed to reach a global state satisfying P within a finite number of state 

transitions. 
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Randomized self-stabilization 

 A system is said to be randomized self-stabilizing system, if and only if it is self-

stabilizing and the expected number of rounds needed to reach a correct state 

(legal state) is bounded by some constant k. 
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Probabilistic self-stabilization 

A system S is said to be probabilistically self stabilizing with respect to a predicate P if it 

satisfies the following two properties: 

 

 Closure: P is closed under the execution of S. That is, once P is established in S, it 

cannot be falsified. 

 

 Convergence: There exists a function f from natural numbers to [0, 1] satisfying limk  

∞ f(k) = 0, such that the probability of reaching a state satisfying P, starting from an 

arbitrary global state within k state transitions, is 1 – f(k). 
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Issues in design of self-stabilization algos 

 Number of states in each of the individual units in a distributed system. 

 Uniform and non-uniform algorithms. 

 Central and distributed demons. 

 Reducing the number of states in a token ring. 

 Shared memory models. 

 Mutual exclusion. 

 Costs of self-stabilization. 
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Dijkstra’s self-stabilizing token ring 

A legitimate state must satisfy the following constraints: 

•   There must be at least one privilege in the system (liveness or no deadlock). 

•   Every move from a legal state must again put the system into a legal state (closure). 

•   During an infinite execution, each machine should enjoy a privilege an infinite  

    number of times (no starvation). 

•   Given any two legal states, there is a series of moves that change one legal state to  

     the other (reachability). 

 

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 7
 



Dijkstra’s self-stabilizing token ring 

Dijkstra considered a legitimate (or legal) state as one in which exactly one machine 

enjoys the privilege.  

–  This corresponds to a form of  mutual exclusion, because the privileged  

    process is the only process is the only process that is allowed in its critical  

    section.  

–  Once the process leaves the critical section, it passes the privilege to one of  

    its neighbors. 
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First solution 

 For any machine, we use the symbols S, L, and R to denote its own state of the left 

neighbor and the state of the right neighbor on the ring, respectively. 

 

The exceptional machine: 

 If L = S then 

 S := (S + 1) mod K 

 End If; 

 

The other machine: 

 If L ≠ S then 

 S := L 

 End if; 
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Second Solution 

The second solution uses only three-state machines. The state of each machine is in {0, 1, 2}. 

 

 The bottom machine, machine 0: 

  If (S + 1) mod 3 = R then 

   S := (S – 1) mod 3 

 

  

 The top machine, machine n – 1: 

  If L = R and (L + 1) mod 3 ≠ S then 

   S := (L + 1) mod 3 
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Second Solution Continued 

The other machines: 

 

 If (S + 1) mod 3 = L then 

  S := L 

  

 If (S + 1) mod 3 = R then 

  S := R 
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The condition (s + 1) mod 3 covers the three possible states; for s = 0, 1, 2, we have  

(s + 1) mod 3 = 1, 2, 0. These result in the following three possibilities: 

 

1. If s = 0 and r = 1, then the state of s is changes to 2. 

 

2. If s = 1 and r = 2, then the state of s is changes to 0. 

 

3. If s = 2 and r = 0, then the state of s is changes to 1. 
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 The top machine, machine n – 1, behaves as follows: 

 If L = R and (L = 1) mod 3 ≠ S then 

  S := (L + 1) mod 3 

 

 The state of the top machine depends upon both its left and right neighbors (the bottom 

machine). The condition specifies that the left neighbor (L) and the right  neighbor (R) 

should be in the same state and (L + 1) mod 3 should not be equal to S.  

 (Note that (L + 1) and 3 is 1, 2, 0 when L is 0, 1, 2, respectively). Thus the state of the top 

machine is as follows: 

 

1. 1, when its left neighbor is 0. 

2. 2, when its left neighbor is 1. 

3. 0, when its left neighbor is 2. 
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All other machines behave as follows: 

If (S + 1) mod 3 = L then 

 S := L 

If (S + 1) mod 3 = R then 

 S := R 

While finding out the state of the other machines (machines 1 and 2 in the example  

below), we first compare the state of a machine with its left neighbor: 

 

1. If s = 0 and L = 1, then s = 0. 

2. If s = 1 and L = 2, then s = 2. 

3. If s = 2 and L = 0, then s = 1. 
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Special networks 

Ghosh found that there are special networks, where the number of states required by each 

processor is two. 

 

Ghosh’s solution 

All nodes (machines) in the network shown in Figure require only two states. However, a 

node needs to use information from all of its neighbors. Let s[i] denote the state of machine 

i. There are two possible states for each machine, 0 and 1. In the algorithms let b denote an 

rbitrary state (0 or 1) and   denote the complementary state of b 
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For machine 0: 

 If (s[0], s[1]) = (    , b) then s[0] := b 

 

For machine 2n – 1: 

 If (s[2n - 1], s[2n - 2]) = (b, b) then s[2n - 1]: =   

 

For even numbered machines: 

 If (s[2i - 2], s[2i - 1], s[2i], s[2i + 1]) = (b, b,   , b) then 

 s[2i]: = b 

 

For odd numbered machines: 

 If (s[2i - 2], s[2i -1], s[2i], s[2i + 1]) = (b, b, b,   ) then 

 s[2i - 1]: =  

~ 
b  

~ 
b 

~ 
b  

~ 
b  
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Dolev’s Self Stabilizing Spanning Tree 

Variables: 

no_neighbors = Number of processor’s neighbors 

i = the writing processor 

m = for whom the data is written 

lrji (local resgister rji ) the last value of rji read by Pi 

 

Root Node: 

{do forever} 

While TRUE do 

 for m := 1 to no_neighbors do 

  write lrim := <0, 0> 

 end 

end 
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Dolev’s Self Stabilizing Spanning Tree 

other Nodes: 

{do forever} 

While TRUE do 

 for m := 1 do no_neighbors do 

  lrmi := read (lrmi) 

  firstFound := false 

  dist := 1 + min(lrmi.dist)  m: 1≤ m ≤ no_neighbors 

  for m :=1 to no_neighbors do 

       if not FirstFound and lrmi.dis = dist – 1 then 

        write rim := <1, dist> 

        FirstFound := true 

        else write rmi := <0, dist> 

   end 

  end 

end 
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