
Pallab Dasgupta

Professor,

Dept. of Computer Sc. & Engg.,

Indian Institute of Technology Kharagpur

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

CS60002: Distributed Systems

Self-Stabilization

Definition of self-stabilization

A system S is self-stabilizing with respect to predicate P

if it satisfies the following two properties:

 Closure: P is closed under the execution of S. That is, once P is established in S, it

cannot be falsified.

 Convergence: Starting from an arbitrary global state, S is guaranteed to reach a

global state satisfying P within a finite number of state transitions.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

Definition of stabilization

[Arora and Gouda] We define stabilization for system S with respect to two predicates P

and Q, over its set of global states.

 Predicate Q denotes a restricted start condition. S satisfies Q  P (read as Q

 stabilizes to P) if it satisfies the following two properties:

– Closure: P is closed under the execution of S. That is, once P is established in S,

it cannot be falsified.

– Convergence: If S starts from any global state that satisfies Q, then S is

guaranteed to reach a global state satisfying P within a finite number of state

transitions.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3

Randomized self-stabilization

 A system is said to be randomized self-stabilizing system, if and only if it is self-

stabilizing and the expected number of rounds needed to reach a correct state

(legal state) is bounded by some constant k.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

Probabilistic self-stabilization

A system S is said to be probabilistically self stabilizing with respect to a predicate P if it

satisfies the following two properties:

 Closure: P is closed under the execution of S. That is, once P is established in S, it

cannot be falsified.

 Convergence: There exists a function f from natural numbers to [0, 1] satisfying limk 

∞ f(k) = 0, such that the probability of reaching a state satisfying P, starting from an

arbitrary global state within k state transitions, is 1 – f(k).

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5

Issues in design of self-stabilization algos

 Number of states in each of the individual units in a distributed system.

 Uniform and non-uniform algorithms.

 Central and distributed demons.

 Reducing the number of states in a token ring.

 Shared memory models.

 Mutual exclusion.

 Costs of self-stabilization.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6

Dijkstra’s self-stabilizing token ring

A legitimate state must satisfy the following constraints:

• There must be at least one privilege in the system (liveness or no deadlock).

• Every move from a legal state must again put the system into a legal state (closure).

• During an infinite execution, each machine should enjoy a privilege an infinite

 number of times (no starvation).

• Given any two legal states, there is a series of moves that change one legal state to

 the other (reachability).

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 7

Dijkstra’s self-stabilizing token ring

Dijkstra considered a legitimate (or legal) state as one in which exactly one machine

enjoys the privilege.

– This corresponds to a form of mutual exclusion, because the privileged

 process is the only process is the only process that is allowed in its critical

 section.

– Once the process leaves the critical section, it passes the privilege to one of

 its neighbors.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 8

First solution

 For any machine, we use the symbols S, L, and R to denote its own state of the left

neighbor and the state of the right neighbor on the ring, respectively.

The exceptional machine:

 If L = S then

 S := (S + 1) mod K

 End If;

The other machine:

 If L ≠ S then

 S := L

 End if;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

Second Solution

The second solution uses only three-state machines. The state of each machine is in {0, 1, 2}.

 The bottom machine, machine 0:

 If (S + 1) mod 3 = R then

 S := (S – 1) mod 3

 The top machine, machine n – 1:

 If L = R and (L + 1) mod 3 ≠ S then

 S := (L + 1) mod 3

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
0

Second Solution Continued

The other machines:

 If (S + 1) mod 3 = L then

 S := L

 If (S + 1) mod 3 = R then

 S := R

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 11

The condition (s + 1) mod 3 covers the three possible states; for s = 0, 1, 2, we have

(s + 1) mod 3 = 1, 2, 0. These result in the following three possibilities:

1. If s = 0 and r = 1, then the state of s is changes to 2.

2. If s = 1 and r = 2, then the state of s is changes to 0.

3. If s = 2 and r = 0, then the state of s is changes to 1.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
2

 The top machine, machine n – 1, behaves as follows:

 If L = R and (L = 1) mod 3 ≠ S then

 S := (L + 1) mod 3

 The state of the top machine depends upon both its left and right neighbors (the bottom

machine). The condition specifies that the left neighbor (L) and the right neighbor (R)

should be in the same state and (L + 1) mod 3 should not be equal to S.

 (Note that (L + 1) and 3 is 1, 2, 0 when L is 0, 1, 2, respectively). Thus the state of the top

machine is as follows:

1. 1, when its left neighbor is 0.

2. 2, when its left neighbor is 1.

3. 0, when its left neighbor is 2.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
3

All other machines behave as follows:

If (S + 1) mod 3 = L then

 S := L

If (S + 1) mod 3 = R then

 S := R

While finding out the state of the other machines (machines 1 and 2 in the example

below), we first compare the state of a machine with its left neighbor:

1. If s = 0 and L = 1, then s = 0.

2. If s = 1 and L = 2, then s = 2.

3. If s = 2 and L = 0, then s = 1.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
4

Special networks

Ghosh found that there are special networks, where the number of states required by each

processor is two.

Ghosh’s solution

All nodes (machines) in the network shown in Figure require only two states. However, a

node needs to use information from all of its neighbors. Let s[i] denote the state of machine

i. There are two possible states for each machine, 0 and 1. In the algorithms let b denote an

rbitrary state (0 or 1) and denote the complementary state of b

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
5

For machine 0:

 If (s[0], s[1]) = (, b) then s[0] := b

For machine 2n – 1:

 If (s[2n - 1], s[2n - 2]) = (b, b) then s[2n - 1]: =

For even numbered machines:

 If (s[2i - 2], s[2i - 1], s[2i], s[2i + 1]) = (b, b, , b) then

 s[2i]: = b

For odd numbered machines:

 If (s[2i - 2], s[2i -1], s[2i], s[2i + 1]) = (b, b, b,) then

 s[2i - 1]: =

~
b

~
b

~
b

~
b

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
6

~
b

Dolev’s Self Stabilizing Spanning Tree

Variables:

no_neighbors = Number of processor’s neighbors

i = the writing processor

m = for whom the data is written

lrji (local resgister rji) the last value of rji read by Pi

Root Node:

{do forever}

While TRUE do

 for m := 1 to no_neighbors do

 write lrim := <0, 0>

 end

end

 INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
7

Dolev’s Self Stabilizing Spanning Tree

other Nodes:

{do forever}

While TRUE do

 for m := 1 do no_neighbors do

 lrmi := read (lrmi)

 firstFound := false

 dist := 1 + min(lrmi.dist)  m: 1≤ m ≤ no_neighbors

 for m :=1 to no_neighbors do

 if not FirstFound and lrmi.dis = dist – 1 then

 write rim := <1, dist>

 FirstFound := true

 else write rmi := <0, dist>

 end

 end

end

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
8

