Distributed Deadlock Detection

CS60002: Distributed Systems

Pallab Dasgupta

Professor,

Dept. of Computer Sc. & Engg.,

Indian Institute of Technology Kharagpur

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR =~

Preliminaries
= The System Model

— The system has only reusable resources
— Processes are allowed only exclusive access to resources
— There is only one copy of each resource

= Resource vs. Communication Deadlocks
= A Graph-Theoretic Model

— Wait-For Graphs

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR N

Deadlock Handling Strategies

= Deadlock Prevention
= Deadlock Avoidance

= Deadlock Detection

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR ™

Issues in Deadlock Detection & Resolution

= Detection
— Progress: No undetected deadlocks
— Safety: No false deadlocks

= Resolution

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR ~

Control Organization for Deadlock Detection

= (Centralized Control

= Distributed Control

= Hierarchical Control

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR LO

Centralized Deadlock-Detection Algorithms

= The Completely Centralized Algorithm
= The Ho-Ramamoorthy Algorithms

— The Two-Phase Algorithm
— The One-phase Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR ©

Distributed Deadlock-Detection Algorithms

= A Path-Pushing Algorithm

— The site waits for deadlock-related information from other sites

— The site combines the received information with its local TWF graph to build
an updated TWF graph

— Forall cycles ‘EX -> T1 -> T2 -> Ex’ which contains the node ‘Ex’, the site

transmits them in string form ‘Ex, T1, T2, EX’ to all other sites where a sub-

transaction of T2 is waiting to receive a message from the sub-transaction of
T2 at that site

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR M~

Chandy et al.’s Edge-Chasing Algorithm

To determine if a blocked process is deadlocked

if P, is locally dependent on itself
then declare a deadlock
else for all P,and P such that

(a) P;is locally dependent upon P, and
(b) P;is waiting on P,, and
(c) P,and P, are on different sites,

send probe (i, j, k) to the home site of P,

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR O

Algorithm Contd..

On the receipt of probe (i, j, k), the site takes the foll. actions:

if (a) P, is blocked, and
(b) dependent, (i) is false, and

(c) P has not replied to all requests of P,
then begin
dependent, (i) = true;
if k = i then declare that P, is deadlocked
else for all P, and P such that
(i) P, is locally dependent upon P, and
(ii) P, is waiting on P_, and
(iii) P, and P, are on different sites,
send probe (i, m, n) to the home site of P,

end.
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR o

Other Edge - Chasing Algorithms

= The Mitchell - Merritt Algorithm

= Sinha - Niranjan Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Chandy et al.’s Diffusion Computation Based Algo

= [nitiate a diffusion computation for a blocked process P;:
send query (i, i, j) to each process P;in the
dependent set DS, of P;;

num; (i) := |DS)|; waiti):= true

= When a blocked process P, receives a query (i, j, k):
if this is the engaging query for process P, then
send query (i, k, m) to all P, in its dependent set DS,;
num,(i) := |DS,|; wait,(i) := true

else if wait,(i) then send a reply (i, k, j) to P;.

11

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Chandy et al.’s Algo. Contd.

= When a process P, receives a reply (i, j, k):
if wait,(i) then begin num, (i) := num,(i) - 1;
if num, (i)=0
then if i = k then declare a deadlock
else send reply (i, k, m) to the process P_which

sent the engaging query

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

A Global State Detection Algorithm

wait;: boolean (:= false) /* records the current status */

t.:integer (:=0) /* current time */

in (i) : set of nodes whose requests are outstanding at i

out (i) : set of nodes on which i is waiting

p; : integer (:= 0) /* number of replies required for unblocking */

w;: real (:= 1.0) /* weight to detect termination of deadlock detection algorithm */

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

A Global State Detection Algorithm
= REQUEST_SEND (i):
[*executed by node i when it blocks on a p.-out of-q, request */
For every node j on which i is blocked do
out (i) — out (i) U {j}; send REQUEST (i) to j;
set p; to the number of replies needed; wait; := true

= REQEST_RECEIVE (j):
[* executed by node i when it receives a request made by j */

in (i) — in (i) U {j};

= REPLY_SEND (j):
[* executed by node i when it replies to a request by j */
in (i) < in (i) - {j}; send REPLY (i) to j;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

A Global State Detection Algorithm (Contd..)

= REPLY_RECEIVE (j):
[*executed by node i when it receives a reply from j to its request
if valid reply for the current request then begin
out(i) — out (i) - {j}; p;— p;—1;
ifp,=0 >
{ wait; — false;
For all k € out (i), send CANCEL (i) to k;
out (i) — @}
end

= CANCEL_RECEIVE (j):
[* executed by node i when it receives a cancel from j */
if j € in (i) then in (i) < in (i) - {j};

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

The Algorithm

= FLOOD, ECHO and SHORT control messages use weights (for termination detection).
= Data structures:

— LS: array [1..N] of record consisting of:

— L§[initl.out /* nodes on which i is waiting in snapshot */
— L§[init].in [* nodes waiting on i in the snapshot */

— L§[init].t [* time when init initiated snapshot */

— L§[init].s [* local blocked state as seen by snapshot */
— LS[init].p [* value of p; as seen in snapshot */

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

The Algorithm

* The distributed WFG is recorded using FLOOD messages in the outward sweep and
is examined for deadlocks using ECHO messages in the inward sweep

— Blocked nodes propagate the FLOOD
— Active nodes initiate reduction with ECHO messages

= Anode is reduced if it receives ECHOs along p; out of its q; outgoing edges

= When an ECHO arriving at a node does not unblock the node, its weight is sent
directly to the initiator using a SHORT message

= |f initiator is not reduced but termination is detected, then we have a deadlock

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

The Algorithm

= SNAPSHOT INITIATE
[* Executed by node i to detect whether it is deadlocked */

init €i;
w; € 0;
LS[init].out € out(i) ;
LS[init].in € 0;
LS[init].t € t;;
LS[init].s € true;
LS[init].p € p;;
send FLOOD(j, i, t, 1/|out(i)|) to each j in out(i).

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

The Algorithm

FLOOD_RECEIVE(j, init, t_init, w)

[* Executed by node i on receiving a FLOOD message from j */
LS[init].t <t_init A j € in(i) > [* valid FLOOD, new snapshot */
LS[init].out < out(i) ; LS[init].in € {j };

LS[init].t € t_init; LS[init].s € wait;;

wait; = true >
LS[init].p € p;;
send FLOOD(i, init, t_init, w / |out(i)|) to each k in out(i).

wait; = false >
LS[init].p € 0;
send ECHO(J, init, t_init, w) to j.
LS[init].in €< LS[init].in-{j}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

The Algorithm

FLOOD_RECEIVE(j, init, t_init, w) [* Contd. */
LS[init].t <t_init A j & in(i) > [* invalid FLOOD, new snapshot */
send ECHO(i, init, t_init, w) to j.
LS[init].t = t_init A j & in(i)) > [* invalid FLOOD, curr snapshot */
send ECHO(i, init, t_init, w) to ji.
LS[init].t =t_init A j € in(i) 2> [* valid FLOOD, current snapshot */
LS[init].s = false -
send ECHO(J, init, t_init, w) to j ;
LS[init].s = true -
LS[init].in € LS[initl.inU{j};

send SHORT(init, t_init, w) to init.
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

The Algorithm

ECHO_RECEIVE(j, init, ¢ init, w)

LS
LS
LS

LS]init
LS]init

init].t =

LS]init

init].t > t_init = discard the ECHO message
init].t < t_init = cannot happen - echo for unseen snapshot

t init> [* ECHO for current snapshot */
out € LSJinit].out-{j};
s = false - send SHORT(i, init, t_init, w) to init ;
S =true 2>
LS[init].p € LS[init]l.p-1;
LS[init].p=0->
LS[init].s < false ;
init =i - declare not deadlocked; exit;
send ECHO(i, init, t_init, w /|LS[init].in|) to k € LS[init].in
LS[init].p # 0 = send SHORT(i, init, t_init, w) to init ;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

The Algorithm

SHORT_RECEIVE(init, t_init, w)

t init < t_block; > discard the message (outdated)

t_init>t_block; = not possible

t_init=t_block; A LS
t_init=t_block; A LS

W, €W +w;

ini]

ini]

.S = false = discard

S = true 2>

w; =1 -> declare deadlock and abort.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

