
Pallab Dasgupta

Professor,

Dept. of Computer Sc. & Engg.,

Indian Institute of Technology Kharagpur

Distributed Deadlock Detection

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1

CS60002: Distributed Systems

Preliminaries

 The System Model

– The system has only reusable resources

– Processes are allowed only exclusive access to resources

– There is only one copy of each resource

 Resource vs. Communication Deadlocks

 A Graph-Theoretic Model

– Wait-For Graphs

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2

Deadlock Handling Strategies

 Deadlock Prevention

 Deadlock Avoidance

 Deadlock Detection

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 3

Issues in Deadlock Detection & Resolution

 Detection

– Progress: No undetected deadlocks

– Safety: No false deadlocks

 Resolution

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 4

Control Organization for Deadlock Detection

 Centralized Control

 Distributed Control

 Hierarchical Control

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 5

Centralized Deadlock-Detection Algorithms

 The Completely Centralized Algorithm

 The Ho-Ramamoorthy Algorithms

– The Two-Phase Algorithm

– The One-phase Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 6

Distributed Deadlock-Detection Algorithms

 A Path-Pushing Algorithm

– The site waits for deadlock-related information from other sites

– The site combines the received information with its local TWF graph to build

 an updated TWF graph

– For all cycles ‘EX -> T1 -> T2 -> Ex’ which contains the node ‘Ex’, the site

transmits them in string form ‘Ex, T1, T2, Ex’ to all other sites where a sub-

transaction of T2 is waiting to receive a message from the sub-transaction of

T2 at that site

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 7

Chandy et al.’s Edge-Chasing Algorithm

To determine if a blocked process is deadlocked

 if Pi is locally dependent on itself

 then declare a deadlock

 else for all Pj and Pk such that

 (a) Pi is locally dependent upon Pj, and

 (b) Pj is waiting on Pk, and

 (c) Pj and Pk are on different sites,

 send probe (i, j, k) to the home site of Pk

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 8

Algorithm Contd..
On the receipt of probe (i, j, k), the site takes the foll. actions:

if (a) Pk is blocked, and

 (b) dependentk(i) is false, and

 (c) Pk has not replied to all requests of Pj,

then begin

 dependentk(i) = true;

 if k = i then declare that Pi is deadlocked

 else for all Pm and Pn such that

 (i) Pk is locally dependent upon Pm, and

 (ii) Pm is waiting on Pn, and

 (iii) Pm and Pn are on different sites,

 send probe (i, m, n) to the home site of Pn

end.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 9

Other Edge - Chasing Algorithms

 The Mitchell – Merritt Algorithm

 Sinha – Niranjan Algorithm

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
0

Chandy et al.’s Diffusion Computation Based Algo

 Initiate a diffusion computation for a blocked process Pi:

 send query (i, i, j) to each process Pj in the

 dependent set DSi of Pi;

 numi (i) := |DSi|; waiti(i):= true

 When a blocked process Pk receives a query (i, j, k):

 if this is the engaging query for process Pk then

 send query (i, k, m) to all Pm in its dependent set DSk;

 numk(i) := |DSk|; waitk(i) := true

 else if waitk(i) then send a reply (i, k, j) to Pj.

 INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 11

Chandy et al.’s Algo. Contd.

 When a process Pk receives a reply (i, j, k):

 if waitk(i) then begin numk (i) := numk(i) – 1;

 if numk (i) = 0

 then if i = k then declare a deadlock

 else send reply (i, k, m) to the process Pmwhich

 sent the engaging query

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
2

A Global State Detection Algorithm

waiti : boolean (:= false) /* records the current status */

ti : integer (:= 0) /* current time */

in (i) : set of nodes whose requests are outstanding at i

out (i) : set of nodes on which i is waiting

pi : integer (:= 0) /* number of replies required for unblocking */

wi : real (:= 1.0) /* weight to detect termination of deadlock detection algorithm */

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
3

A Global State Detection Algorithm
 REQUEST_SEND (i):

 /*executed by node i when it blocks on a pi-out of-qi request */

 For every node j on which i is blocked do

 out (i) ← out (i) U {j}; send REQUEST (i) to j;

 set pi to the number of replies needed; waiti := true

 REQEST_RECEIVE (j):

 /* executed by node i when it receives a request made by j */

 in (i) ← in (i) U {j};

 REPLY_SEND (j):

 /* executed by node i when it replies to a request by j */

 in (i) ← in (i) - {j}; send REPLY (i) to j;

 INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
4

A Global State Detection Algorithm (Contd..)

 REPLY_RECEIVE (j):

 /*executed by node i when it receives a reply from j to its request

 if valid reply for the current request then begin

 out (i) ← out (i) – {j}; pi ← pi – 1;

 if pi = 0 

 { waiti ← false;

 For all k  out (i), send CANCEL (i) to k;

 out (i) ← Ф }

 end

 CANCEL_RECEIVE (j):

 /* executed by node i when it receives a cancel from j */

 if j  in (i) then in (i) ← in (i) - {j};

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
5

The Algorithm

 FLOOD, ECHO and SHORT control messages use weights (for termination detection).

 Data structures:

– LS: array [1..N] of record consisting of:

– LS[init].out /* nodes on which i is waiting in snapshot */

– LS[init].in /* nodes waiting on i in the snapshot */

– LS[init].t /* time when init initiated snapshot */

– LS[init].s /* local blocked state as seen by snapshot */

– LS[init].p /* value of pi as seen in snapshot */

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
6

The Algorithm

 The distributed WFG is recorded using FLOOD messages in the outward sweep and

is examined for deadlocks using ECHO messages in the inward sweep

– Blocked nodes propagate the FLOOD

– Active nodes initiate reduction with ECHO messages

 A node is reduced if it receives ECHOs along pi out of its qi outgoing edges

 When an ECHO arriving at a node does not unblock the node, its weight is sent

directly to the initiator using a SHORT message

 If initiator is not reduced but termination is detected, then we have a deadlock

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
7

The Algorithm

 SNAPSHOT INITIATE

 /* Executed by node i to detect whether it is deadlocked */

 init  i ;

 wi  0;

 LS[init].out  out(i) ;

 LS[init].in  0;

 LS[init].t  ti ;

 LS[init].s  true ;

 LS[init].p  pi ;

 send FLOOD(i, i, ti, 1 / |out(i)|) to each j in out(i).

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 1
8

The Algorithm
 FLOOD_RECEIVE(j, init, t_init, w)

 /* Executed by node i on receiving a FLOOD message from j */

 LS[init].t < t_init  j  in(i)  /* valid FLOOD, new snapshot */

 LS[init].out  out(i) ; LS[init].in  { j };

 LS[init].t  t_init ; LS[init].s  waiti ;

 waiti = true 

 LS[init].p  pi ;

 send FLOOD(i, init, t_init, w / |out(i)|) to each k in out(i).

 waiti = false 

 LS[init].p  0 ;

 send ECHO(i, init, t_init, w) to j.

 LS[init].in  LS[init].in – { j }

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

1
9

The Algorithm

 FLOOD_RECEIVE(j, init, t_init, w) /* Contd. */

 LS[init].t < t_init  j  in(i)  /* invalid FLOOD, new snapshot */

 send ECHO(i, init, t_init, w) to j.

 LS[init].t = t_init  j  in(i)  /* invalid FLOOD, curr snapshot */

 send ECHO(i, init, t_init, w) to j.

 LS[init].t = t_init  j  in(i)  /* valid FLOOD, current snapshot */

 LS[init].s = false 

 send ECHO(i, init, t_init, w) to j ;

 LS[init].s = true 

 LS[init].in  LS[init].in U { j } ;

 send SHORT(init, t_init, w) to init.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

2
0

The Algorithm
 ECHO_RECEIVE(j, init, t_init, w)

 LS[init].t > t_init  discard the ECHO message

 LS[init].t < t_init  cannot happen – echo for unseen snapshot

 LS[init].t = t_init  /* ECHO for current snapshot */

 LS[init].out  LS[init].out – { j } ;

 LS[init].s = false  send SHORT(i, init, t_init, w) to init ;

 LS[init].s = true 

 LS[init].p  LS[init].p – 1 ;

 LS[init].p = 0 

 LS[init].s  false ;

 init = i  declare not deadlocked; exit;

 send ECHO(i, init, t_init, w / |LS[init].in|) to k  LS[init].in

 LS[init].p  0  send SHORT(i, init, t_init, w) to init ;

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
1

The Algorithm

 SHORT_RECEIVE(init, t_init, w)

 t_init < t_blocki  discard the message (outdated)

 t_init > t_blocki  not possible

 t_init = t_blocki  LS[init].s = false  discard

 t_init = t_blocki  LS[init].s = true 

 wi  wi + w ;

 wi = 1  declare deadlock and abort.

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 2
2

