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A real life problem

How to keep a count (or approximate count) on the number of DISTINCT
persons visiting your webpage?

Resource Minimization Objectives:

• Should not use too much space

• Should not take too much time to update your database
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Data Streams

Goal: Computation over a stream of items

- An item of the stream arrives & stored in temporary memory.

- The item is accessed using the allowed set of operations and some of the
information is stored in a working space.

- The item then disappears and the next item arrives.

Computational Task : Estimate/Compute some interesting functions over the
entire data stream.

Resource Minimization Objectives:

- Space complexity - The (worst case) amount of space required.

- Update-time complexity - The (worst case) amount of time required to
process any item.
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Set Streams: When the items are sets

Union Size Estimation

Given a stream of sets S1, . . . , Sm, all Si ⊆ Ω and two parameters ε, δ
Output an estimate E such that with probability ≥ (1− δ)

(1− ε)

∣∣∣∣∣
m⋃
i=1

Si

∣∣∣∣∣ ≤ E ≤ (1 + ε)

∣∣∣∣∣
m⋃
i=1

Si

∣∣∣∣∣

The special case when |Si | = 1 is the well-investigated Distinct Elements
Problem Estimation Problem.

• How are the sets given?

• How are the sets accessed?

Lets come back to these formalizations later.
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Example: Klee’s Measure Problem

• Estimate the union of axis-parallel rectangles in Rd .
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Example: Klee’s Measure Problem

• Estimate the union of axis-parallel rectangles in Rd .
(Discrete version: so count the number of integer points)

• Every Si = [ai,1, bi,1]× [ai,2, bi,2] . . . [ai,d , bi,d ] where ai,j ≤ ∆; bi,j ≤ ∆

• Goal: Output an estimate E such that with probability ≥ (1− δ)

(1− ε)

∣∣∣∣∣
m⋃
i=1

Si

∣∣∣∣∣ ≤ E ≤ (1 + ε)

∣∣∣∣∣
m⋃
i=1

Si

∣∣∣∣∣

• Some ways to access the sets?

• Know the size of Si : O(d log |∆|)
• Sample uniformly at random elements from Si : O(d log |∆|)
• For any element x ∈ Rd , check if x ∈ Si : O(d log |∆|)

• Lot of work done, most recently by Tirthapura-Woodruff (2012),
Vahrenhold (2007), Indyk-Woodruff (2005)

• Open Problem: Show Klee’s Measure Problem can be done with space
and update-time complexity Õ(poly(d , log |∆|)).
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Slide 6/ 28



Special Case of Union Estimation: Distinct Elements Problem

Input A data stream D =< a1, a2, . . . am > where ai ∈ [n]

Output Compute the number of Distinct elements in D. Formally,
F = |{a1, a2, . . . am}|

Example: D =< 1, 1, 2, 1, 4, 1, 1, 1 > F = 3

• Our focus: (ε, δ)-approximation

Pr [(1− ε)F ≤ Est ≤ (1 + ε)F ] ≥ 1− δ

Naive Solution Maintain a large hash table.
Worst-case space complexity of O(n)

Objective Optimize space and update time complexity
Update Time: Time to process each element of the stream
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Rich History of work

• Flajolet and Martin (1985), Alon, Matias, and Szegedy (1996), Bar-Yossef,
Jayram, Kumar, Sivakumar and Trevisan (2001), . . ., Kane, Nelson, and
Woodruff (2010), . . ., B lasiok (2019), . . .

Crowning Jewel Optimal (time and ) space complexity: O
(
log n + 1

ε2
· log 1/δ

)

Limitations Practically efficient algorithms are beyond graduate classroom
Theoretically efficient algorithms can be taught in graduate classroom but
don’t work in practice

Theorem (C-Vinodchandran-Meel (ESA’22))

A simple algorithm with time and space complexity of
O( 1

ε2
· log n · (logm + log 1/δ)).

Remark: The description and algorithm requires only basic data structures and
knowledge of elementary probability theory (Chernoff Bound), and can be easily
taught in an undergraduate course, and the algorithm is practically efficient.

The paper is just five pages (including abstract and bibliographical remarks)
Knuth (May 23): “ Ever since I saw it, a few days ago, I’ve been unable to
resist trying to explain the ideas to just about everybody I meet.”
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How to estimate the volume of an object?
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How to estimate the volume of an object?

 

• Pick random points from the universe and measure the fraction of points
falling inside the region.
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How to estimate the volume of an object? Natural Approach 2

• Pick every element in the region independently with probability p.

The expected number of elements picks = p × (size of the region).
So the estimate can be = (number of elements picked)× 1

p

The estimation is good if p ≥ 1

ε2(size of the region)
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Core Idea

Theorem (C-Vinodchandran-Meel (ESA’22))

A simple algorithm with time and space complexity of
O( 1

ε2
· log n · (logm + log 1/δ)).

Core Idea If we pick every ball in a bucket with probability p in our bucket and
we end up k balls in the bucket, then k

p
is a good estimate of the number of

balls in the bucket.
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Key Ingredients - I

Idea 1 Sample every element of
⋃i=m

i=1 {ai} independently with prob. p

Algorithm NaiveSampler

Input Stream D = 〈a1, a2, . . . , am〉, p
1: Initialize B ← ∅;
2: for i = 1 to m do
3: With probability p, B ← B ∪ {ai}
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Key Ingredients - I
Idea 1 Sample every element of

⋃i=m
i=1 {ai} independently with prob. p

Algorithm NaiveSampler

Input Stream D = 〈a1, a2, . . . , am〉, p
1: Initialize B ← ∅;
2: for i = 1 to m do
3: With probability p, B ← B ∪ {ai}

Challenge Elements that repeat more often are more likely to be sampled
Solution Throw it Away is All You Need

Algorithm Sampler

Input Stream D = 〈a1, a2, . . . , am〉, p
1: Initialize B ← ∅;
2: for i = 1 to m do
3: B ← B \ {ai}
4: With probability p, B ← B ∪ {ai}

Observation Whether an element x ∈ B or not only depends on
whether x was picked when it appeared last time
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Key Ingredients - II
Idea 1 Sample every element of

⋃i=m
i=1 {ai} independently with prob. p

Idea 2 Determine just the right value of p?
• Too large p, |B| is too large

• Too small p, |B|
p

is not a good estimator

Our Idea: SAMPLE the SAMPLED elements, when needed

Currently: Every element is picked independently with probability p.
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is not a good estimator

Our Idea: SAMPLE the SAMPLED elements, when needed

For each sampled point pick it with probability 1
2
.
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Idea 2 Determine just the right value of p?
• Too large p, |B| is too large

• Too small p, |B|
p

is not a good estimator

Our Idea: SAMPLE the SAMPLED elements, when needed

Effectively: Every point is picked with probability p
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Key Ingredients - II

Idea 1 Sample every element of
⋃i=m

i=1 {ai} independently with prob. p

Idea 2 Determine just the right value of p?

• Too large p, |B| is too large

• Too small p, |B|
p

is not a good estimator

Algorithm Adaptive Estimator

Input Stream D = 〈a1, a2, . . . , am〉, ε, δ
1: Initialize B ← ∅; thresh← 12

ε2
log( 8m

δ
); p ← 1

2: for i = 1 to m do
3: B ← B \ {ai}
4: With probability p, B ← B ∪ {ai}
5: if |B| = thresh then
6: Throw away each element of B with probability 1

2

7: p ← p
2

8: Output |B|
p
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Algorithm Adaptive Estimator

1: Initialize B ← ∅; thresh← 12
ε2

log( 8m
δ

); p ← 1
2: for i = 1 to m do
3: B ← B \ {ai}
4: With probability p, B ← B ∪ {ai}
5: while |B| = thresh do
6: For each element of B throw away the element independently with

probability 1
2

7: p ← p
2

8: Output |B|
p

Badi : The value of p at iteration i is less than 1
ε2·F0

.

Claim 2 Pr[Badi ] ≤ δ
4·m

• For p to fall below 1
ε2·F0

, it should be the case that if every element is

sampled with p = 1
ε2·F0

, we would have |B| ≥ thresh
• Apply Chernoff bound on sum of i.i.d. indicator variables

Claim 3 Pr[Bad =
⋃

i Badi ] ≤ δ
4

Error: The output of the algorithm is not in the range [(1− ε)F0, (1 + ε)F0].

Claim 3 Pr[Error ∩ Bad] ≤ δ
4

• Apply Chernoff bound on sum of i.i.d. indicator variables

Lemma 1 Pr[Error] ≤ δ
2
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Well, here we are

Distinct Elements in Streams: An Algorithm for the (Text) Book, ESA 2022

Algorithm Distinct-element-estimator

Input Stream D = 〈a1, a2, . . . , am〉, ε, δ
1: Initialize p ← 1; B ← ∅; thresh← 12

ε2
log( 8m

δ
)

2: for i = 1 to m do
3: B ← B \ {ai}
4: With probability p, B ← B ∪ {ai}
5: while |B| = thresh do
6: Throw away each element of B with probability 1

2

7: p ← p
2

8: Output |B|
p

Theorem (C-Vinodchandran-Meel (ESA’22))

A simple algorithm with time and space complexity of
O( 1

ε2
· log n · (logm + log 1/δ)).
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What is so nice about the algorithm?

• It is simple and can be followed by students with only a knowledge of
Chernoff bounds.

• The algorithm is a sampling-based algorithm.

• This makes the algorithm much faster in implementation compared to
hashing-based algorithms.

• It can be extended to the Union of Sets Estimation Problem.
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Beyond the Singleton Setting: Delphic Sets (know thyself )

• The algorithm naturally extends to setting where every element ai is
replaced by Si ⊆ [n] belonging to Delphic family of sets and we are
interested in computing | ∪ Si |

Cardinality : Know the size of Si

Sample : Sample uniformly at random elements from Si

Membership : For an element x ∈ [n], check if x ∈ Si

Importance of Delphic Sets in Practice

- Estimation of the number of solutions of a DNF Formula
- Klee’s Measure Problem: Volume of d-dimensional rectangles
- Test Coverage Estimation Problem
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Delphic Sets Union Estimation Problem in Streaming Setting

Union Size Estimation

Given a stream of sets S1, . . . , Sm, all Si ⊆ Ω and two parameters ε, δ
Output an estimate E such that with probability ≥ (1− δ)

(1− ε)

∣∣∣∣∣
m⋃
i=1

Si

∣∣∣∣∣ ≤ E ≤ (1 + ε)

∣∣∣∣∣
m⋃
i=1

Si

∣∣∣∣∣

• Representation Size of each set: O(log |Ω|)
• Actions supported in O(log |Ω|) space and time:

• Know the size of Si ,
• Sample uniformly at random elements from Si ,
• For an element x ∈ Ω, check if x ∈ Si
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Our Main Theorem (PODS 21)

Theorem

For any stream of DELPHIC sets S1, . . . , Sm and any parameter ε and δ, there
is a very simple algorithm that (ε, δ)-estimates |

⋃m
i=1 Si | with

• Update-time complexity : Õ(log2(m/δ) · ε−2 · log |Ω|)
• Space complexity : O(log(m/δ) · ε−2 log |Ω|).

Note: If one is only interested in space complexity and not on update-time
complexity, simple F0 estimation by Kane, Nelson and Woodruff (2010) give
O( 1

ε2
+ log |Ω|) bound and this is also lower bound for space complexity.
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The main idea is the same as the Singleton setting

• At any point of time, say after k items (sets) S1, . . . , Sk we store a
random subset B of ∪k

i=1Si such that,

Criteria 1 Each element of ∪k
i=1Si is in B independently with probability p,

Criteria 2 p is small enough so that the number of elements selected is not too
large, and

Criteria 3 With high probability p ≥ log(1/δ)

ε2|∪k
i=1Si |

.

• Then |B|/p helps to estimate the union.

Except one more trick: How do you do even handle the first set?

How to sample each element of the set S1 independently with probability p?
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Same Algorithm (nearly) works

Algorithm Delphic-Union

1: Initialize B ← ∅;p ← 1

2: thresh← 3 ·
(

log(2m/δ)

ε2

)
3: for i = 1 to m do
4: for all s ∈ B do
5: if s ∈ Si then remove s from B
6: For each element of Si : with probability p add it to B.
7: while |B| ≥ thresh do
8: Update p = p/2
9: Throw away each element of B with probability 1/2

10: Output |B|
p

Challenge For each element of Si : with probability p add it to B.
• Ni ← Bin(|Si |, p)

• Draw Ni distinct elements from Si by drawing Ni logNi log( 2m
δ

) samples

One Last thing: What if Ni is too large? (Update time complexity)

• Well, just update p to p/2 and resample Ni ← Bin(Ni , 1/2) until
Ni < thresh
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Union Estimation for DELPHIC sets

Algorithm Final Algorithm

1: Initialize B ← ∅; p ← 1; thresh← 3 ·
(

log(2m/δ)

ε2

)
2: for i = 1 to m do
3: for all s ∈ B do
4: if s ∈ Si then remove s from B
5: Ni ← Bin(|Si |, p)
6: while |B|+ Ni ≥ thresh do
7: Ni ← Bin(Ni , 1/2) and p ← p/2
8: Throw away each element of B with probability 1/2

9: Pick Ni distinct elements of Si randomly and add them to B.

10: Output |B|
p

Theorem

For any stream of DELPHIC sets S1, . . . , Sm and any parameter ε and δ, there
is a very simple algorithm that (ε, δ)-estimates |

⋃m
i=1 Si | with

• Update-time complexity : Õ(log(m/δ) · ε−2 · log(m/δ) · log |Ω|)
• Space complexity : O(log(m/δ) · ε−2 log |Ω|).
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• Update-time complexity : Õ(log(m/δ) · ε−2 · log(m/δ) · log |Ω|)
• Space complexity : O(log(m/δ) · ε−2 log |Ω|).

Slide 26/ 28



Some implications of our result

Theorem

There is a very simple algorithm that takes in input a stream of Delphic sets
S1, . . . , Sm, parameters ε and δ, and provides (ε, δ)-estimate of |

⋃m
i=1 Si |

• Update-time complexity : Õ(log2(m/δ) · ε−2 · log n)

• Space complexity : O(log(m/δ) · ε−2 · log n).

• Klee’s Measure Problem Estimate union of axis-parallel rectangles in Rd .
Our algorithm gives the first efficient algorithm with linear dependence on
the dimension d — a long standing open problem. (PODS-21, PODS-22)

• Model Counting for DNF Count the number of DNF solutions.
Our algorithm (nearly) matches the optimal bounds (in non-streaming
setting!) The practical implementation (after engineering improvements)
achieves nearly 100× speed up over prior state of the art. (IJCAI-23)

• Coverage Estimation Problem Critical for software testing: estimate
amount of coverage achieved with certain set of “test vectors”.
We out-perform all currently used techniques in practice. (ICSE-22)
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Wrapping up ...

Conclusion A simple algorithm for element distinctness that is sampling based.

The algorithm generalizes to obtain estimates of union of DELPHIC sets.

The algorithm solves the Klee’s Measure problem.

The algorithm can be used even in non-streaming set-up to design practically
efficient algorithms.

Further Work (PODS 22, APPROX 24) Algorithm for Delphic sets without
dependence on stream size (m). We have the update-time and space
complexity of Õ(log2(|Ω|/δ) · ε−2).

Donald E. Knuth modified the algorithm to obtain a unbiased F0 estimator
for the Distinct Element problem.

Open Problem Optimal algorithm for Delphic sets?

These slides are available at tinyurl.com/streaming-talk
Knuth’s Note: https://cs.stanford.edu/~knuth/papers/cvm-note.pdf
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