Open Problems: Recent Trends in Algorithms 2024

July 1-3, 2024

The following open problems were discussed in Recent Trends in Algorithms in July 1-3, 2024.

1. Suppose f is a univariate polynomial of degree d with complex coefficients that has exactly s non-zero monomials (i.e. has sparsity s). What can we say about the number of non-zero monomials in f ² ?

Clearly, this number is at most $O(s^2)$, and this bound is essentially tight. But what is the best lower bound on the sparsity of f^2 , or in general any power of f.

A classical result of A. Schinzel () proved a bound of $\Omega(\log \log s)$ for this, but as far as I know, the current state of art is still far from well understood.

Throughout this problem, we should think of s as being much much smaller than d.

2. Suppose $t, \ell \in \mathbb{N}$ such that $t - \ell > 2$ and $S \subseteq \{0, 1\}^n$ such that $|S| > 1$. What is the minimum degree of a polynomial $P \in \mathbb{R}[x_1, \ldots, x_n]$ such that $\forall u \in S$, P has a zero of multiplicity exactly ℓ at u and $\forall v \in \{0,1\}^n \setminus S$, P has a zero of multiplicity at least ℓ at ν ?

For $|S| = 1$, see [\[SW20\]](#page-3-0).

3. A set S ⊂ N is called *dissociated* if any equality of the form

$$
\sum_{s\in\mathcal{S}}\epsilon_s\cdot s=0
$$

where $\varepsilon_s \in \{-1, 0, +1\}$ implies that all the ε_s 's are 0. In other words, all subset sums are distinct.

It was proven by Richard Guy that for a dissociated set S, we have

$$
|\mathcal{S}(n)|\leqslant \log_2 n + \frac{1}{2}\log_2\log_2 n + 1.3
$$

where $\mathcal{S}(n) = \mathcal{S} \cap [1, n]$ [\[Guy82\]](#page-2-0). It was conjectured by Erdos that the right hand side can be improved to $\log_2 n + c$ for some constant c. Check [here](http://garden.irmacs.sfu.ca/op/sets_with_distinct_subset_sums) for more.

Now, consider the greedy algorithm for Dissociated sets. It starts with two given integers $a > 0$ and $b > a$, and another integer n. It sets $\gamma_1 = a$, $\gamma_2 = b$ and in the r-th step it chooses γ_r to be the smallest integer greater than γ_{r-1} such that the sequence $\{\gamma_k\}_{k=1}^r$ is dissociated. The algorithm halts at the n-th step.

Conjecture: For given a, b, let $\Gamma_{a,b} = {\gamma_1 = a, \gamma_2 = b, \gamma_3, \dots}$ be the dissociated sequence that the greedy algorithm produces. Then, there is an $n_0 = n_0(a, b)$ such that

$$
{\gamma}_\mathfrak{n}=2\cdot{\gamma}_{\mathfrak{n}-1}
$$

for all $n \geq n_0$.

Moreover, there is an A such that if $a, b > A$, then there is an $n_0 = n_0(a, b)$ such that $\gamma_n < 2 \cdot \gamma_{n-1}$ for $n < n_0$; $\gamma_{n_0} > 2 \cdot \gamma_{n_0-1}$ and $\gamma_n = 2 \cdot \gamma_{n-1}$ for all $n > n_0$.

- 4. For a graph family H , the H CONTRACTION problem we are given a graph G and an integer k, and the goal is to check if we can contract at most k edges in G to obtain a graph from H . For hereditary families H , if (G, k) is a yesinstance of $\mathcal H$ CONTRACTION then there exists $X \subset V(G)$ of size at most 2k, such that $G - X$ is in H . A generic step one may consider when designing FPT algorithms for the parameter k for a hereditary bipartite family H is to iterate over the above stated deletion set X gets partitioned into two sets, making the runtime already at least to 4^k. Consider the very simple case when H is the family of all complete bipartite graphs; the corresponding H CONTRACTION is called BICLIQUE CONTRACTION. Can you design an algorithm for BICLIQUE CONTRACTION running in time $2^k \cdot |V(G)|^{O(1)}$?
- 5. Consider the following setup: we are given an $x \in \{-1,1\}^N$ via an oracle which, for any $i \in [N]$, returns the value of the bit x_i . We also have a real multilinear polynomial p of degree d and N variables with the guarantee that the absolute value of p is bounded (by some constant) for inputs in $\{-1, 1\}^N$. The task is to obtain a good estimate of this polynomial making minimal queries to x . The queries can be adaptive or non-adaptive.

Let us illustrate this for $d = 1$. Below, we will build an unbiased estimator for p which, on expectation makes *one* (!) oracle query and has a small constant variance.

Let $p(x_1,...,x_N) = \sum_i a_i x_i$. Without loss of generality assume that all the real a_i s are non-zero. Also, there exists a constant $c > 0$ such that for all $\widehat{\mathbf{x}} \in \{-1, 1\}^{\mathbb{N}} |p(\widehat{\mathbf{x}})| \leqslant c.$

For each $i \in [N]$, define a Bernoulli random variable $X_i = 1$ with probability $|\mathfrak{a_i}|/\sum_i |\mathfrak{a_i}|$ and takes a value 0 otherwise.

Consider an estimator

$$
\mathbf{P}(\mathbf{x}) = \sum_{i=1}^{N} |a_i| \left(\sum_{i=1}^{N} sign(a_i) x_i \mathbf{X}_i \right)
$$

In simple terms, this estimator decides to query a variable x_i with probability proportional to its coefficient.

It can be argued (using linearity of expectation) that for any $x \in \{-1,1\}^N$, $\mathbb{E}[\mathbf{P}(\mathbf{x})] = \mathbf{p}(\mathbf{x})$. Moreover, using an application of [Khinchine inequality,](https://en.wikipedia.org/wiki/Khintchine_inequality) it can be shown that for all $x \in \{-1,1\}^{\mathbb{N}}$, its variance $\text{Var}(\textbf{P}) = O(1)$.

Moreover on expectation, the number of variables queried is $\mathbb{E}\left[\sum_i X_i\right] =$ $\sum_i \mathbb{E}[X_i] = 1.$

The question is: can we design similar unbiased estimators for p with low number of queries and low variance for values of $d \ge 2$ and understand the number of queries versus variance trade-offs in the adaptive and non-adaptive query setting. This problem has applications in distribution distinguishing problem and questions on simulating quantum algorithms classically.

A good starting point on connections to quantum algorithms is a seminal result due to Aaronson and Ambainis [\[AA18\]](#page-2-1).

For an arbitrary d, if the polynomial corresponds to success probability of a $d/2$ query quantum algorithm (with the string x thought as the oracle), then unbiased estimators are known due to Bravyi *et al.*[\[BGGS21\]](#page-2-2).

6. What is the **deterministic** query complexity of reconstructing rooted trees with maximum degree $\leq d$ using ancestor queries?

There is a hidden rooted tree with maximum degree $\le d$. You get oracle access to the underlying ancestor-descendant relation in the tree, that is, you can query for any pair (a, b) if a is an ancestor of b. The problem is to reconstruct the tree, minimizing the number of queries. $d = 2$ is a special case of this problem, which corresponds to sorting in the comparison model. [\[JS13\]](#page-2-3) presents a deterministic algorithm with query complexity $O(dn^{1.5} \log n)$. The best known lower bound is $Ω(dn log_d n)$, which also holds for randomized algorithms [\[BG23\]](#page-2-4), and a randomized algorithm with a matching query and time complexity was presented in [\[RY23\]](#page-3-1). In case of deterministic algorithms however, even for rooted binary trees, there is a huge open gap of $\Omega(n \log n)$ vs. $O(n^{1.5} \log n)$.

References

- [AA18] Scott Aaronson and Andris Ambainis. Forrelation: A problem that optimally separates quantum from classical computing. *SIAM Journal on Computing*, 47(3):982–1038, 2018.
- [BG23] Paul Bastide and Carla Groenland. Optimal distance query reconstruction for graphs without long induced cycles, 2023.
- [BGGS21] Sergey Bravyi, David Gosset, Daniel Grier, and Luke Schaeffer. Classical algorithms for forrelation, 2021.
- [Guy82] Richard K. Guy. Sets of integers whose subsets have distinct sums. *Annals of Discrete Mathematics*, 12:141–154, 1982.
- [JS13] M. Jagadish and Anindya Sen. Learning a bounded-degree tree using separator queries. In Sanjay Jain, Rémi Munos, Frank Stephan, and Thomas

Zeugmann, editors, *Algorithmic Learning Theory*, pages 188–202, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

- [RY23] Jishnu Roychoudhury and Jatin Yadav. An Optimal Algorithm for Sorting in Trees. In Patricia Bouyer and Srikanth Srinivasan, editors, *43rd IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2023)*, volume 284 of *Leibniz International Proceedings in Informatics (LIPIcs)*, pages 7:1–7:14, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
- [SW20] Lisa Sauermann and Yuval Wigderson. Polynomials that vanish to high order on most of the hypercube. *arXiv preprint*, 2020.