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The following open problems were discussed in Recent Trends in Algorithms in
July 1-3, 2024.

1. Suppose f is a univariate polynomial of degree d with complex coefficients that
has exactly s non-zero monomials (i.e. has sparsity s). What can we say about
the number of non-zero monomials in f2 ?

Clearly, this number is at most O(s2), and this bound is essentially tight. But
what is the best lower bound on the sparsity of f2, or in general any power of
f.

A classical result of A. Schinzel () proved a bound of Ω(log log s) for this, but
as far as I know, the current state of art is still far from well understood.

Throughout this problem, we should think of s as being much much smaller
than d.

2. Suppose t, ℓ ∈ N such that t − ℓ > 2 and S ⊆ {0, 1, }n such that |S| > 1. What
is the minimum degree of a polynomial P ∈ R[x1, . . . , xn] such that ∀u ∈ S, P
has a zero of multiplicity exactly ℓ at u and ∀v ∈ {0, 1}n \ S, P has a zero of
multiplicity at least ℓ at v?

For |S| = 1, see [SW20].

3. A set S ⊂ N is called dissociated if any equality of the form∑
s∈S

εs · s = 0

where εs ∈ {−1, 0,+1} implies that all the εs’s are 0. In other words, all subset
sums are distinct.

It was proven by Richard Guy that for a dissociated set S, we have

|S(n)| ⩽ log2 n+
1
2

log2 log2 n+ 1.3

where S(n) = S ∩ [1,n] [Guy82]. It was conjectured by Erdos that the right
hand side can be improved to log2 n + c for some constant c. Check here for
more.
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http://garden.irmacs.sfu.ca/op/sets_with_distinct_subset_sums


Now, consider the greedy algorithm for Dissociated sets. It starts with two
given integers a > 0 and b > a, and another integer n. It sets γ1 = a, γ2 = b

and in the r-th step it chooses γr to be the smallest integer greater than γr−1

such that the sequence {γk}
r
k=1 is dissociated. The algorithm halts at the n-th

step.

Conjecture: For given a,b, let Γa,b = {γ1 = a,γ2 = b,γ3, . . . } be the dis-
sociated sequence that the greedy algorithm produces. Then, there is an
n0 = n0(a,b) such that

γn = 2 · γn−1

for all n ⩾ n0.

Moreover, there is an A such that if a,b > A, then there is an n0 = n0(a,b)
such that γn < 2 · γn−1 for n < n0; γn0 > 2 · γn0−1 and γn = 2 · γn−1 for all
n > n0.

4. For a graph family H, the H CONTRACTION problem we are given a graph G

and an integer k, and the goal is to check if we can contract at most k edges
in G to obtain a graph from H. For hereditary families H, if (G,k) is a yes-
instance of H CONTRACTION then there exists X ⊆ V(G) of size at most 2k,
such that G− X is in H. A generic step one may consider when designing FPT
algorithms for the parameter k for a hereditary bipartite family H is to iterate
over the above stated deletion set X gets partitioned into two sets, making the
runtime already at least to 4k. Consider the very simple case when H is the
family of all complete bipartite graphs; the corresponding H CONTRACTION

is called BICLIQUE CONTRACTION. Can you design an algorithm for BICLIQUE

CONTRACTION running in time 2k · |V(G)|O(1)?

5. Consider the following setup: we are given an x ∈ {−1, 1}N via an oracle which,
for any i ∈ [N], returns the value of the bit xi. We also have a real multilinear
polynomial p of degree d and N variables with the guarantee that the absolute
value of p is bounded (by some constant) for inputs in {−1, 1}N. The task is to
obtain a good estimate of this polynomial making minimal queries to x. The
queries can be adaptive or non-adaptive.

Let us illustrate this for d = 1. Below, we will build an unbiased estimator for
p which, on expectation makes one (!) oracle query and has a small constant
variance.

Let p(x1, . . . , xN) =
∑

i aixi. Without loss of generality assume that all the
real ais are non-zero. Also, there exists a constant c > 0 such that for all
x̂ ∈ {−1, 1}N|p(x̂)| ⩽ c.

For each i ∈ [N], define a Bernoulli random variable Xi = 1 with probability
|ai|/

∑
i |ai| and takes a value 0 otherwise.

Consider an estimator

P(x) =
N∑
i=1

|ai|

(
N∑
i=1

sign(ai)xiXi

)

In simple terms, this estimator decides to query a variable xi with probability
proportional to its coefficient.
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It can be argued (using linearity of expectation) that for any x ∈ {−1, 1}N,
E [P(x)] = p(x). Moreover, using an application of Khinchine inequality, it can
be shown that for all x ∈ {−1, 1}N, its variance Var(P) = O(1).

Moreover on expectation, the number of variables queried is E [
∑

i Xi] =∑
i E [Xi] = 1.

The question is: can we design similar unbiased estimators for p with low num-
ber of queries and low variance for values of d ⩾ 2 and understand the number
of queries versus variance trade-offs in the adaptive and non-adaptive query
setting. This problem has applications in distribution distinguishing problem
and questions on simulating quantum algorithms classically.

A good starting point on connections to quantum algorithms is a seminal result
due to Aaronson and Ambainis [AA18].

For an arbitrary d, if the polynomial corresponds to success probability of a
d/2 query quantum algorithm (with the string x thought as the oracle), then
unbiased estimators are known due to Bravyi et al.[BGGS21].

6. What is the deterministic query complexity of reconstructing rooted trees with
maximum degree ⩽ d using ancestor queries?

There is a hidden rooted tree with maximum degree ⩽ d. You get oracle ac-
cess to the underlying ancestor-descendant relation in the tree, that is, you can
query for any pair (a,b) if a is an ancestor of b. The problem is to recon-
struct the tree, minimizing the number of queries. d = 2 is a special case of
this problem, which corresponds to sorting in the comparison model. [JS13]
presents a deterministic algorithm with query complexity O(dn1.5 logn). The
best known lower bound is Ω(dn logd n), which also holds for randomized
algorithms [BG23], and a randomized algorithm with a matching query and
time complexity was presented in [RY23]. In case of deterministic algorithms
however, even for rooted binary trees, there is a huge open gap of Ω(n logn)
vs. O(n1.5 logn).
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