
Fast decoding of univariate
multiplicity codes

Based on joint work with Rohan Goyal, Prahladh Harsha and
Ashutosh Shankar

Fast decoding of univariate multiplicity codes

Fast Noisy Hermite Interpolation

Based on joint work with Rohan Goyal, Prahladh Harsha and
Ashutosh Shankar

A Basic Fact About Polynomials

A Basic Fact About Polynomials

A non-zero univariate polynomial of degree d over a field has at most d zeroes.

A Basic Fact About Polynomials

A non-zero univariate polynomial of degree d over a field has at most d zeroes.

In other words…

A Basic Fact About Polynomials

A non-zero univariate polynomial of degree d over a field has at most d zeroes.

In other words…

 𝐹 − 𝑓𝑖𝑒𝑙𝑑, 𝑃, 𝑄 ∈ 𝐹[𝑥], 𝑑𝑒𝑔 ≤ 𝑑, 𝑃 ≠ 𝑄

A Basic Fact About Polynomials

A non-zero univariate polynomial of degree d over a field has at most d zeroes.

In other words…

Then, .

𝐹 − 𝑓𝑖𝑒𝑙𝑑, 𝑃, 𝑄 ∈ 𝐹[𝑥], 𝑑𝑒𝑔 ≤ 𝑑, 𝑃 ≠ 𝑄

{𝑎 ∈ 𝐹 :𝑃 (𝑎) = 𝑄(𝑎)} ≤ 𝑑

A Consequence

A Consequence

𝑆 ⊆ 𝐹, 𝑆 = 𝑛, 𝑅:𝑆 → 𝐹

A Consequence

Then, the number of polynomials of degree at most d, such that

is at most 1.

𝑆 ⊆ 𝐹, 𝑆 = 𝑛, 𝑅:𝑆 → 𝐹

𝑃 (𝑥) ∈ 𝐹[𝑥]

{𝑎 ∈ 𝑆:𝑃 (𝑎) = 𝑅(𝑎)} >
𝑛 + 𝑑

2

A Consequence

Then, the number of polynomials of degree at most d, such that

is at most 1.

Question 1: Given the set S and the function R, find P efficiently.

𝑆 ⊆ 𝐹, 𝑆 = 𝑛, 𝑅:𝑆 → 𝐹

𝑃 (𝑥) ∈ 𝐹[𝑥]

{𝑎 ∈ 𝑆:𝑃 (𝑎) = 𝑅(𝑎)} >
𝑛 + 𝑑

2

A Consequence

Then, the number of polynomials of degree at most d, such that

is at most 1.

Question 1: Given the set S and the function R, find P efficiently.

R and P agree everywhere: this is univariate polynomial interpolation

𝑆 ⊆ 𝐹, 𝑆 = 𝑛, 𝑅:𝑆 → 𝐹

𝑃 (𝑥) ∈ 𝐹[𝑥]

{𝑎 ∈ 𝑆:𝑃 (𝑎) = 𝑅(𝑎)} >
𝑛 + 𝑑

2

A Consequence

Then, the number of polynomials of degree at most d, such that

is at most 1.

Question 1: Given the set S and the function R, find P efficiently.

R and P agree everywhere: this is univariate polynomial interpolation
Here – polynomial interpolation in the presence of errors/noise.

𝑆 ⊆ 𝐹, 𝑆 = 𝑛, 𝑅:𝑆 → 𝐹

𝑃 (𝑥) ∈ 𝐹[𝑥]

{𝑎 ∈ 𝑆:𝑃 (𝑎) = 𝑅(𝑎)} >
𝑛 + 𝑑

2

Univariate Polynomial Interpolation with Noise

Univariate Polynomial Interpolation with Noise

Many known algorithms for this problem, since the 60’s.

Univariate Polynomial Interpolation with Noise

Many known algorithms for this problem, since the 60’s.
	 Peterson’s algorithm, Berlekamp-Massey, Berlekamp-Welch

Univariate Polynomial Interpolation with Noise

Many known algorithms for this problem, since the 60’s.
	 Peterson’s algorithm, Berlekamp-Massey, Berlekamp-Welch

Elementary, but neat and beautiful, and widely useful.

Univariate Polynomial Interpolation with Noise

Many known algorithms for this problem, since the 60’s.
	 Peterson’s algorithm, Berlekamp-Massey, Berlekamp-Welch

Elementary, but neat and beautiful, and widely useful.

This talk : about generalizations of this problem

Univariate Polynomial Interpolation with Noise

Many known algorithms for this problem, since the 60’s.
	 Peterson’s algorithm, Berlekamp-Massey, Berlekamp-Welch

Elementary, but neat and beautiful, and widely useful.

This talk : about generalizations of this problem
	 	 - higher multiplicities

Univariate Polynomial Interpolation with Noise

Many known algorithms for this problem, since the 60’s.
	 Peterson’s algorithm, Berlekamp-Massey, Berlekamp-Welch

Elementary, but neat and beautiful, and widely useful.

This talk : about generalizations of this problem
	 	 - higher multiplicities
	 	 - smaller number of agreements

The Case of High Multiplicity

The Case of High Multiplicity

 vanishes with multiplicity at least s at if all the derivatives of P of order at
most (s-1) vanish at a.

𝑃 ∈ 𝐹[𝑥] 𝑎 ∈ 𝐹

P(a) = P(1)(a) = ⋯ = P(s−1)(a) = 0

The Case of High Multiplicity

 vanishes with multiplicity at least s at if all the derivatives of P of order at
most (s-1) vanish at a.

Fact:
A non-zero univariate polynomial of degree d over a field has at most d/s
zeroes of multiplicity s.

𝑃 ∈ 𝐹[𝑥] 𝑎 ∈ 𝐹

P(a) = P(1)(a) = ⋯ = P(s−1)(a) = 0

A Consequence

A Consequence

S ⊆ F, |S | = n, R : S → Fs

A Consequence

Then, the number of polynomials of degree at most d, such that

 is at most 1.

S ⊆ F, |S | = n, R : S → Fs

𝑃 (𝑥) ∈ 𝐹[𝑥]

|a ∈ S : P, R agree on a with mult s | >
n + d /s

2

A Consequence

Then, the number of polynomials of degree at most d, such that

 is at most 1.

Agreement with mult at least s: for i in {0, 1, …, s-1},

S ⊆ F, |S | = n, R : S → Fs

𝑃 (𝑥) ∈ 𝐹[𝑥]

|a ∈ S : P, R agree on a with mult s | >
n + d /s

2

Ri(a) = P(i)(a)

A Consequence

Then, the number of polynomials of degree at most d, such that

 is at most 1.

Agreement with mult at least s: for i in {0, 1, …, s-1},

Noisy Hermite interpolation: Given the set S and a function R, find P efficiently.

S ⊆ F, |S | = n, R : S → Fs

𝑃 (𝑥) ∈ 𝐹[𝑥]

|a ∈ S : P, R agree on a with mult s | >
n + d /s

2

Ri(a) = P(i)(a)

Noisy interpolation: tolerating more errors

Noisy interpolation: tolerating more errors

Noisy polynomial interpolation: errors more than (n-d)/2

Noisy interpolation: tolerating more errors

Noisy polynomial interpolation: errors more than (n-d)/2

Noisy interpolation: tolerating more errors

Noisy polynomial interpolation: errors more than (n-d)/2
Noisy Hermite interpolation: errors more than (n-d/s)/2

Noisy interpolation: tolerating more errors

Noisy polynomial interpolation: errors more than (n-d)/2
Noisy Hermite interpolation: errors more than (n-d/s)/2

The ‘close enough’ polynomial is no longer unique…but how many can there be ?

Noisy interpolation: tolerating more errors

Noisy polynomial interpolation: errors more than (n-d)/2
Noisy Hermite interpolation: errors more than (n-d/s)/2

The ‘close enough’ polynomial is no longer unique…but how many can there be ?

Theorem [Johnson’ 62]

Noisy interpolation: tolerating more errors

Noisy polynomial interpolation: errors more than (n-d)/2
Noisy Hermite interpolation: errors more than (n-d/s)/2

The ‘close enough’ polynomial is no longer unique…but how many can there be ?

Theorem [Johnson’ 62]

Number of such polynomials is a polynomially bounded for agreement more than for nd

Noisy interpolation: tolerating more errors

Noisy polynomial interpolation: errors more than (n-d)/2
Noisy Hermite interpolation: errors more than (n-d/s)/2

The ‘close enough’ polynomial is no longer unique…but how many can there be ?

Theorem [Johnson’ 62]

Number of such polynomials is a polynomially bounded for agreement more than for

noise polynomial interpolation, and agreement more than for noisy Hermite
interpolation.

nd
nd /s

Noisy interpolation: tolerating more errors

Noisy polynomial interpolation: errors more than (n-d)/2
Noisy Hermite interpolation: errors more than (n-d/s)/2

The ‘close enough’ polynomial is no longer unique…but how many can there be ?

Theorem [Johnson’ 62]

Number of such polynomials is a polynomially bounded for agreement more than for

noise polynomial interpolation, and agreement more than for noisy Hermite
interpolation.

Q. Can these polynomials be found efficiently ?

nd
nd /s

Noisy poly interpolation up to Johnson bound

Noisy poly interpolation up to Johnson bound

Theorem [Sudan 95, Guruswami-Sudan 98]

Noisy poly interpolation up to Johnson bound

Theorem [Sudan 95, Guruswami-Sudan 98]
Polynomial time algorithms for noisy polynomial interpolation up to Johnson bound.

Noisy poly interpolation up to Johnson bound

Theorem [Sudan 95, Guruswami-Sudan 98]
Polynomial time algorithms for noisy polynomial interpolation up to Johnson bound.

Extremely influential results:

Noisy poly interpolation up to Johnson bound

Theorem [Sudan 95, Guruswami-Sudan 98]
Polynomial time algorithms for noisy polynomial interpolation up to Johnson bound.

Extremely influential results: among the greatest hits in computer science

Noisy poly interpolation up to Johnson bound

Theorem [Sudan 95, Guruswami-Sudan 98]
Polynomial time algorithms for noisy polynomial interpolation up to Johnson bound.

Extremely influential results: among the greatest hits in computer science, elementary and
simple but very clever,

Noisy poly interpolation up to Johnson bound

Theorem [Sudan 95, Guruswami-Sudan 98]
Polynomial time algorithms for noisy polynomial interpolation up to Johnson bound.

Extremely influential results: among the greatest hits in computer science, elementary and
simple but very clever, re-introduces new ideas (the polynomial method),

Noisy poly interpolation up to Johnson bound

Theorem [Sudan 95, Guruswami-Sudan 98]
Polynomial time algorithms for noisy polynomial interpolation up to Johnson bound.

Extremely influential results: among the greatest hits in computer science, elementary and
simple but very clever, re-introduces new ideas (the polynomial method), consequences in

Noisy poly interpolation up to Johnson bound

Theorem [Sudan 95, Guruswami-Sudan 98]
Polynomial time algorithms for noisy polynomial interpolation up to Johnson bound.

Extremely influential results: among the greatest hits in computer science, elementary and
simple but very clever, re-introduces new ideas (the polynomial method), consequences in
pseudorandomness,

Noisy poly interpolation up to Johnson bound

Theorem [Sudan 95, Guruswami-Sudan 98]
Polynomial time algorithms for noisy polynomial interpolation up to Johnson bound.

Extremely influential results: among the greatest hits in computer science, elementary and
simple but very clever, re-introduces new ideas (the polynomial method), consequences in
pseudorandomness, complexity theory,

Noisy poly interpolation up to Johnson bound

Theorem [Sudan 95, Guruswami-Sudan 98]
Polynomial time algorithms for noisy polynomial interpolation up to Johnson bound.

Extremely influential results: among the greatest hits in computer science, elementary and
simple but very clever, re-introduces new ideas (the polynomial method), consequences in
pseudorandomness, complexity theory, cryptography

Noisy poly interpolation up to Johnson bound

Theorem [Sudan 95, Guruswami-Sudan 98]
Polynomial time algorithms for noisy polynomial interpolation up to Johnson bound.

Extremely influential results: among the greatest hits in computer science, elementary and
simple but very clever, re-introduces new ideas (the polynomial method), consequences in
pseudorandomness, complexity theory, cryptography and discrete math.

Noisy poly interpolation up to Johnson bound

Theorem [Sudan 95, Guruswami-Sudan 98]
Polynomial time algorithms for noisy polynomial interpolation up to Johnson bound.

Extremely influential results: among the greatest hits in computer science, elementary and
simple but very clever, re-introduces new ideas (the polynomial method), consequences in
pseudorandomness, complexity theory, cryptography and discrete math.
Subsequent attempts at improving the running time further.

Noisy poly interpolation up to Johnson bound

Theorem [Sudan 95, Guruswami-Sudan 98]
Polynomial time algorithms for noisy polynomial interpolation up to Johnson bound.

Extremely influential results: among the greatest hits in computer science, elementary and
simple but very clever, re-introduces new ideas (the polynomial method), consequences in
pseudorandomness, complexity theory, cryptography and discrete math.
Subsequent attempts at improving the running time further.

Theorem [Alekhnovich 2002]
A nearly linear time algorithm for this problem, almost up to the Johnson bound.

Noisy Hermite interpolation up to Johnson bound

Noisy Hermite interpolation up to Johnson bound

Theorem [Nielsen 2001]

Noisy Hermite interpolation up to Johnson bound

Theorem [Nielsen 2001]
A polynomial time algorithm for noisy Hermite interpolation up to Johnson bound.

Noisy Hermite interpolation up to Johnson bound

Theorem [Nielsen 2001]
A polynomial time algorithm for noisy Hermite interpolation up to Johnson bound.

Builds on the ideas in Guruswami-Sudan and much more…..

Noisy Hermite interpolation up to Johnson bound

Theorem [Nielsen 2001]
A polynomial time algorithm for noisy Hermite interpolation up to Johnson bound.

Builds on the ideas in Guruswami-Sudan and much more…..
A nearly linear time algorithm for this remained elusive though.

Noisy Hermite interpolation up to Johnson bound

Theorem [Nielsen 2001]
A polynomial time algorithm for noisy Hermite interpolation up to Johnson bound.

Builds on the ideas in Guruswami-Sudan and much more…..
A nearly linear time algorithm for this remained elusive though.

Kopparty 2014: Is there a nearly linear time analog of Nielsen’s algorithm ?

Landscape beyond Johnson bound

Landscape beyond Johnson bound

Noisy polynomial interpolation:

Landscape beyond Johnson bound

Noisy polynomial interpolation: overall unclear…depends on the set S of evaluation points,
and no algorithms are known.

Landscape beyond Johnson bound

Noisy polynomial interpolation: overall unclear…depends on the set S of evaluation points,
and no algorithms are known.

A very active area of research…many many open problems.

Landscape beyond Johnson bound

Landscape beyond Johnson bound

Theorem [Kopparty 13, Guruswami-Wang 14]

Landscape beyond Johnson bound

Theorem [Kopparty 13, Guruswami-Wang 14]

For all , and all , there is an efficient algorithm for noisy Hermite
interpolation for agreement greater than .

ϵ > 0 s > 1/ϵ2

(1 + ϵ)d /s

Landscape beyond Johnson bound

Theorem [Kopparty 13, Guruswami-Wang 14]

For all , and all , there is an efficient algorithm for noisy Hermite
interpolation for agreement greater than .

Apriori, not even clear that the number of such polynomials is poly bounded.

ϵ > 0 s > 1/ϵ2

(1 + ϵ)d /s

Landscape beyond Johnson bound

Theorem [Kopparty 13, Guruswami-Wang 14]

For all , and all , there is an efficient algorithm for noisy Hermite
interpolation for agreement greater than .

Apriori, not even clear that the number of such polynomials is poly bounded.
Note that we need agreement at least d/s to determine a deg d polynomial.

ϵ > 0 s > 1/ϵ2

(1 + ϵ)d /s

Landscape beyond Johnson bound

Theorem [Kopparty 13, Guruswami-Wang 14]

For all , and all , there is an efficient algorithm for noisy Hermite
interpolation for agreement greater than .

Apriori, not even clear that the number of such polynomials is poly bounded.
Note that we need agreement at least d/s to determine a deg d polynomial.

Kopparty-Ron Zewi-Saraf-Wootters 2018: the number of polynomials output by the
above algorithms is a constant.

ϵ > 0 s > 1/ϵ2

(1 + ϵ)d /s

Landscape beyond Johnson bound

Theorem [Kopparty 13, Guruswami-Wang 14]

For all , and all , there is an efficient algorithm for noisy Hermite
interpolation for agreement greater than .

Apriori, not even clear that the number of such polynomials is poly bounded.
Note that we need agreement at least d/s to determine a deg d polynomial.

Kopparty-Ron Zewi-Saraf-Wootters 2018: the number of polynomials output by the
above algorithms is a constant.

Q.Can all of these be done in nearly linear time ?

ϵ > 0 s > 1/ϵ2

(1 + ϵ)d /s

Our results

Our results

Theorem [Goyal, Harsha, K., Shankar 2023]

Our results

Theorem [Goyal, Harsha, K., Shankar 2023]

For all , and all , there is a nearly linear time algorithm for noisy Hermite
interpolation for agreement greater than .

ϵ > 0 s > 1/ϵ2

(1 + ϵ)d /s

Our results

Theorem [Goyal, Harsha, K., Shankar 2023]

For all , and all , there is a nearly linear time algorithm for noisy Hermite
interpolation for agreement greater than .

Some caveats :

ϵ > 0 s > 1/ϵ2

(1 + ϵ)d /s

Our results

Theorem [Goyal, Harsha, K., Shankar 2023]

For all , and all , there is a nearly linear time algorithm for noisy Hermite
interpolation for agreement greater than .

Some caveats : d/sn is a constant , characteristic of the underlying field is zero or greater
than d.

ϵ > 0 s > 1/ϵ2

(1 + ϵ)d /s

Our results

Theorem [Goyal, Harsha, K., Shankar 2023]

For all , and all , there is a nearly linear time algorithm for noisy Hermite
interpolation for agreement greater than .

Some caveats : d/sn is a constant , characteristic of the underlying field is zero or greater
than d. Good reasons for these caveats to exist.

ϵ > 0 s > 1/ϵ2

(1 + ϵ)d /s

Our results

Theorem [Goyal, Harsha, K., Shankar 2023]

For all , and all , there is a nearly linear time algorithm for noisy Hermite
interpolation for agreement greater than .

Some caveats : d/sn is a constant , characteristic of the underlying field is zero or greater
than d. Good reasons for these caveats to exist.

Answers Kopparty’s question in a general form

ϵ > 0 s > 1/ϵ2

(1 + ϵ)d /s

Our results

Theorem [Goyal, Harsha, K., Shankar 2023]

For all , and all , there is a nearly linear time algorithm for noisy Hermite
interpolation for agreement greater than .

Some caveats : d/sn is a constant , characteristic of the underlying field is zero or greater
than d. Good reasons for these caveats to exist.

Answers Kopparty’s question in a general form
Is an analog of Alekhnovich’s result, with even larger error tolerance

ϵ > 0 s > 1/ϵ2

(1 + ϵ)d /s

Coding theoretic context

Coding theoretic context

Theorem [Goyal, Harsha, K., Shankar 2023]
Over fields of zero or large characteristic, constant rate univariate multiplicity codes can be
list decoded up to list-decoding capacity in nearly linear time.

Overview of the algorithm

Overview of the algorithm

Builds upon the ideas in prior work, and in particular relies on the polynomial method

Overview of the algorithm

Builds upon the ideas in prior work, and in particular relies on the polynomial method
Essentially, takes the algorithm of Guruswami-Wang for this problem, and tries to
implement each of the steps in nearly linear time

Overview of the algorithm

Builds upon the ideas in prior work, and in particular relies on the polynomial method
Essentially, takes the algorithm of Guruswami-Wang for this problem, and tries to
implement each of the steps in nearly linear time
On the way, we stumble upon independently interesting questions and in some settings,
interesting answers to them

Overview of the algorithm

Builds upon the ideas in prior work, and in particular relies on the polynomial method
Essentially, takes the algorithm of Guruswami-Wang for this problem, and tries to
implement each of the steps in nearly linear time
On the way, we stumble upon independently interesting questions and in some settings,
interesting answers to them

Two main steps:

Overview of the algorithm

Builds upon the ideas in prior work, and in particular relies on the polynomial method
Essentially, takes the algorithm of Guruswami-Wang for this problem, and tries to
implement each of the steps in nearly linear time
On the way, we stumble upon independently interesting questions and in some settings,
interesting answers to them

Two main steps:
1. Construct a differential equation satisfied by all the close enough polynomials

Overview of the algorithm

Builds upon the ideas in prior work, and in particular relies on the polynomial method
Essentially, takes the algorithm of Guruswami-Wang for this problem, and tries to
implement each of the steps in nearly linear time
On the way, we stumble upon independently interesting questions and in some settings,
interesting answers to them

Two main steps:
1. Construct a differential equation satisfied by all the close enough polynomials
2. Solve the equation to recover all such polynomials

Overview of the algorithm: main steps

Overview of the algorithm: main steps

Input: a function and a parameter d R : S → Fs

Overview of the algorithm: main steps

Input: a function and a parameter d
L : list of all degree d polynomials P with large agreement with R

R : S → Fs

Overview of the algorithm: main steps

Input: a function and a parameter d
L : list of all degree d polynomials P with large agreement with R

1. Construct a differential equation satisfied by all close enough polynomials

R : S → Fs

Overview of the algorithm: main steps

Input: a function and a parameter d
L : list of all degree d polynomials P with large agreement with R

1. Construct a differential equation satisfied by all close enough polynomials

Construct a non-zero polynomial

such that for all P in L,

R : S → Fs

Q(x, y1, ⋯, ym) = A0(x) + A1(x)y1 + ⋯ + Am(x)ym

Q(x, P(x), P(1)(x)⋯, P(m−1)(x)) = 0

Overview of the algorithm: main steps

Input: a function and a parameter d
L : list of all degree d polynomials P with large agreement with R

1. Construct a differential equation satisfied by all close enough polynomials

Construct a non-zero polynomial

such that for all P in L,

Why does such a Q exist ?

R : S → Fs

Q(x, y1, ⋯, ym) = A0(x) + A1(x)y1 + ⋯ + Am(x)ym

Q(x, P(x), P(1)(x)⋯, P(m−1)(x)) = 0

Overview of the algorithm: main steps

Input: a function and a parameter d
L : list of all degree d polynomials P with large agreement with R

1. Construct a differential equation satisfied by all close enough polynomials

Construct a non-zero polynomial

such that for all P in L,

Why does such a Q exist ?
How do we find it in near linear time ?

R : S → Fs

Q(x, y1, ⋯, ym) = A0(x) + A1(x)y1 + ⋯ + Am(x)ym

Q(x, P(x), P(1)(x)⋯, P(m−1)(x)) = 0

Overview of the algorithm: main steps

But suppose step 1 can be done….

Overview of the algorithm: main steps

But suppose step 1 can be done….
2. Solve the differential equation to recover such polynomials

Overview of the algorithm: main steps

But suppose step 1 can be done….
2. Solve the differential equation to recover such polynomials
Solve for degree d P such that

Overview of the algorithm: main steps

But suppose step 1 can be done….
2. Solve the differential equation to recover such polynomials
Solve for degree d P such that

 Q(x, P(x), ⋯, P(m−1)(x)) = A0(x) + ∑
i

Ai(x)P(i−1)(x) ≡ 0

Overview of the algorithm: main steps

But suppose step 1 can be done….
2. Solve the differential equation to recover such polynomials
Solve for degree d P such that

How many such solutions are there ?

Q(x, P(x), ⋯, P(m−1)(x)) = A0(x) + ∑
i

Ai(x)P(i−1)(x) ≡ 0

Overview of the algorithm: main steps

But suppose step 1 can be done….
2. Solve the differential equation to recover such polynomials
Solve for degree d P such that

How many such solutions are there ?
We could be in trouble if there are more than constantly many solutions.

Q(x, P(x), ⋯, P(m−1)(x)) = A0(x) + ∑
i

Ai(x)P(i−1)(x) ≡ 0

Overview of the algorithm: main steps

But suppose step 1 can be done….
2. Solve the differential equation to recover such polynomials
Solve for degree d P such that

How many such solutions are there ?
We could be in trouble if there are more than constantly many solutions.
In general, how do we go about solving such equations…and that too in near linear time ?

Q(x, P(x), ⋯, P(m−1)(x)) = A0(x) + ∑
i

Ai(x)P(i−1)(x) ≡ 0

Step 1: constructing the differential equation

Step 1: constructing the differential equation

Construct a differential equation satisfied by all close enough polynomials

Step 1: constructing the differential equation

Construct a differential equation satisfied by all close enough polynomials

Construct a non-zero polynomial

such that for all P in L,

Q(x, y1, ⋯, ym) = A0(x) + A1(x)y1 + ⋯ + Am(x)ym

Q(x, P(x), P(1)(x)⋯, P(m−1)(x)) = 0

Step 1: constructing the differential equation

Construct a differential equation satisfied by all close enough polynomials

Construct a non-zero polynomial

such that for all P in L,

Set up a system of homogeneous linear equations in the coefficients of Q, with more
variables than constraints (based on R).

Q(x, y1, ⋯, ym) = A0(x) + A1(x)y1 + ⋯ + Am(x)ym

Q(x, P(x), P(1)(x)⋯, P(m−1)(x)) = 0

Step 1: constructing the differential equation

Construct a differential equation satisfied by all close enough polynomials

Construct a non-zero polynomial

such that for all P in L,

Set up a system of homogeneous linear equations in the coefficients of Q, with more
variables than constraints (based on R).
Solve the system to obtain the Q.

Q(x, y1, ⋯, ym) = A0(x) + A1(x)y1 + ⋯ + Am(x)ym

Q(x, P(x), P(1)(x)⋯, P(m−1)(x)) = 0

Step 1: constructing the differential equation

Construct a differential equation satisfied by all close enough polynomials

Construct a non-zero polynomial

such that for all P in L,

Set up a system of homogeneous linear equations in the coefficients of Q, with more
variables than constraints (based on R).
Solve the system to obtain the Q.
Guruswami-Wang showed a way of doing this in poly time. We need to do this faster.

Q(x, y1, ⋯, ym) = A0(x) + A1(x)y1 + ⋯ + Am(x)ym

Q(x, P(x), P(1)(x)⋯, P(m−1)(x)) = 0

Step 1: constructing the differential equation

Construct a differential equation satisfied by all close enough polynomials

Construct a non-zero polynomial

such that for all P in L,

Set up a system of homogeneous linear equations in the coefficients of Q, with more
variables than constraints (based on R).
Solve the system to obtain the Q.
Guruswami-Wang showed a way of doing this in poly time. We need to do this faster.
We rely on ideas of Alekhnovich to view this as a case of finding shortest vector (in the
degree norm) in a lattice over the univariate polynomial ring.

Q(x, y1, ⋯, ym) = A0(x) + A1(x)y1 + ⋯ + Am(x)ym

Q(x, P(x), P(1)(x)⋯, P(m−1)(x)) = 0

Step 2: solving the differential equation

Step 2: solving the differential equation

Solve A0(x) + A1(x)P(x) + ⋯ + Am(x)P(m−1)(x) ≡ 0

Step 2: solving the differential equation

Solve

Structure of degree d solutions: set of degree d solutions forms an affine subspace of
dimension m

A0(x) + A1(x)P(x) + ⋯ + Am(x)P(m−1)(x) ≡ 0

Step 2: solving the differential equation

Solve

Structure of degree d solutions: set of degree d solutions forms an affine subspace of
dimension m
Guruswami-Wang: an efficient algorithm that takes Q as input and outputs a basis of this
affine space

A0(x) + A1(x)P(x) + ⋯ + Am(x)P(m−1)(x) ≡ 0

Step 2: solving the differential equation

Solve

Structure of degree d solutions: set of degree d solutions forms an affine subspace of
dimension m
Guruswami-Wang: an efficient algorithm that takes Q as input and outputs a basis of this
affine space

Technical statement

A0(x) + A1(x)P(x) + ⋯ + Am(x)P(m−1)(x) ≡ 0

Step 2: solving the differential equation

Solve

Structure of degree d solutions: set of degree d solutions forms an affine subspace of
dimension m
Guruswami-Wang: an efficient algorithm that takes Q as input and outputs a basis of this
affine space

Technical statement
A fast algorithm that takes Q as input and outputs a basis of this linear subspace.

A0(x) + A1(x)P(x) + ⋯ + Am(x)P(m−1)(x) ≡ 0

Step 2: solving the differential equation

Step 2: solving the differential equation

m = 2 for the rest of this discussion

Step 2: solving the differential equation

m = 2 for the rest of this discussion

Q. Solve A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0

Step 2: solving the differential equation

m = 2 for the rest of this discussion

Q. Solve

Simpler question : solve

A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0

A0(x) + A1(x)P(x) ≡ 0

Step 2: solving the differential equation

m = 2 for the rest of this discussion

Q. Solve

Simpler question : solve

Solution is unique (if one exists)

A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0

A0(x) + A1(x)P(x) ≡ 0

Step 2: solving the differential equation

m = 2 for the rest of this discussion

Q. Solve

Simpler question : solve

Solution is unique (if one exists)

Can always find one using long division of univariate polynomials

A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0

A0(x) + A1(x)P(x) ≡ 0

Step 2: solving the differential equation

m = 2 for the rest of this discussion

Q. Solve

Simpler question : solve

Solution is unique (if one exists)

Can always find one using long division of univariate polynomials

Can we do this in near linear time ?

A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0

A0(x) + A1(x)P(x) ≡ 0

Step 2: solving the differential equation

m = 2 for the rest of this discussion

Q. Solve

Simpler question : solve

Solution is unique (if one exists)

Can always find one using long division of univariate polynomials

Can we do this in near linear time ?

Yes, but not trivial.

A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0

A0(x) + A1(x)P(x) ≡ 0

Step 2: solving the differential equation

m = 2 for the rest of this discussion

Q. Solve

Simpler question : solve

Solution is unique (if one exists)

Can always find one using long division of univariate polynomials

Can we do this in near linear time ?

Yes, but not trivial.

Results of Sieveking, Kung, Strassen from 1970s. Beautiful application of FFT, Newton iteration,
divide and conquer.

A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0

A0(x) + A1(x)P(x) ≡ 0

Step 2: solving the differential equation

Simpler question : solve A0(x) + A1(x)P(x) ≡ 0

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2

Thus,

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0 + A1P = A0 + A1(U + xd/2V(x)) = (A0 + A1U) + xd/2(A1V) ≡ 0

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2

Thus,

This happens if and only if

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0 + A1P = A0 + A1(U + xd/2V(x)) = (A0 + A1U) + xd/2(A1V) ≡ 0

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2

Thus,

This happens if and only if

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0 + A1P = A0 + A1(U + xd/2V(x)) = (A0 + A1U) + xd/2(A1V) ≡ 0

A0(x) + A1(x)U(x) ≡ 0 mod xd/2

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2

Thus,

This happens if and only if

 and

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0 + A1P = A0 + A1(U + xd/2V(x)) = (A0 + A1U) + xd/2(A1V) ≡ 0

A0(x) + A1(x)U(x) ≡ 0 mod xd/2

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2

Thus,

This happens if and only if

 and , where

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0 + A1P = A0 + A1(U + xd/2V(x)) = (A0 + A1U) + xd/2(A1V) ≡ 0

A0(x) + A1(x)U(x) ≡ 0 mod xd/2 B(x) + xd/2A1(x)V(x) ≡ 0 mod xd

B = A0 + A1U

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2

Thus,

This happens if and only if

 and , where

For a ‘correct’ U, B is divisible by .

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0 + A1P = A0 + A1(U + xd/2V(x)) = (A0 + A1U) + xd/2(A1V) ≡ 0

A0(x) + A1(x)U(x) ≡ 0 mod xd/2 B(x) + xd/2A1(x)V(x) ≡ 0 mod xd

B = A0 + A1U

xd/2

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2

Thus,

This happens if and only if

 and , where

For a ‘correct’ U, B is divisible by . Thus,

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0 + A1P = A0 + A1(U + xd/2V(x)) = (A0 + A1U) + xd/2(A1V) ≡ 0

A0(x) + A1(x)U(x) ≡ 0 mod xd/2 B(x) + xd/2A1(x)V(x) ≡ 0 mod xd

B = A0 + A1U

xd/2 B(x) + xd/2A1(x)V(x) ≡ 0 mod xd

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2

Thus,

This happens if and only if

 and , where

For a ‘correct’ U, B is divisible by . Thus, if and only if

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0 + A1P = A0 + A1(U + xd/2V(x)) = (A0 + A1U) + xd/2(A1V) ≡ 0

A0(x) + A1(x)U(x) ≡ 0 mod xd/2 B(x) + xd/2A1(x)V(x) ≡ 0 mod xd

B = A0 + A1U

xd/2 B(x) + xd/2A1(x)V(x) ≡ 0 mod xd

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2

Thus,

This happens if and only if

 and , where

For a ‘correct’ U, B is divisible by . Thus, if and only if
 for

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0 + A1P = A0 + A1(U + xd/2V(x)) = (A0 + A1U) + xd/2(A1V) ≡ 0

A0(x) + A1(x)U(x) ≡ 0 mod xd/2 B(x) + xd/2A1(x)V(x) ≡ 0 mod xd

B = A0 + A1U

xd/2 B(x) + xd/2A1(x)V(x) ≡ 0 mod xd

B̃(x) + A1(x)V(x) ≡ 0 mod xd/2 B̃ = B(x)/xd/2

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2

Thus,

This happens if and only if

 and , where

For a ‘correct’ U, B is divisible by . Thus, if and only if
 for

Thus, U and V must satisfy

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0 + A1P = A0 + A1(U + xd/2V(x)) = (A0 + A1U) + xd/2(A1V) ≡ 0

A0(x) + A1(x)U(x) ≡ 0 mod xd/2 B(x) + xd/2A1(x)V(x) ≡ 0 mod xd

B = A0 + A1U

xd/2 B(x) + xd/2A1(x)V(x) ≡ 0 mod xd

B̃(x) + A1(x)V(x) ≡ 0 mod xd/2 B̃ = B(x)/xd/2

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2

Thus,

This happens if and only if

 and , where

For a ‘correct’ U, B is divisible by . Thus, if and only if
 for

Thus, U and V must satisfy

 and

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0 + A1P = A0 + A1(U + xd/2V(x)) = (A0 + A1U) + xd/2(A1V) ≡ 0

A0(x) + A1(x)U(x) ≡ 0 mod xd/2 B(x) + xd/2A1(x)V(x) ≡ 0 mod xd

B = A0 + A1U

xd/2 B(x) + xd/2A1(x)V(x) ≡ 0 mod xd

B̃(x) + A1(x)V(x) ≡ 0 mod xd/2 B̃ = B(x)/xd/2

A0(x) + A1(x)U(x) ≡ 0 mod xd/2 B̃(x) + A1(x)V(x) ≡ 0 mod xd/2

Step 2: solving the differential equation

Simpler question : solve A0(x) + A1(x)P(x) ≡ 0

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2
Thus, U and V must satisfy

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2
Thus, U and V must satisfy

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0(x) + A1(x)U(x) ≡ 0 mod xd/2

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2
Thus, U and V must satisfy

 and

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0(x) + A1(x)U(x) ≡ 0 mod xd/2 B̃(x) + A1(x)V(x) ≡ 0 mod xd/2

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2
Thus, U and V must satisfy

 and

Two sub-problems of about half the size, together with pre and post processing that is
nearly linear time using FFT

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0(x) + A1(x)U(x) ≡ 0 mod xd/2 B̃(x) + A1(x)V(x) ≡ 0 mod xd/2

Step 2: solving the differential equation

Simpler question : solve

Write for U, V of degree d/2
Thus, U and V must satisfy

 and

Two sub-problems of about half the size, together with pre and post processing that is
nearly linear time using FFT
Recurse…..

A0(x) + A1(x)P(x) ≡ 0

P(x) = U(x) + xd/2V(x)

A0(x) + A1(x)U(x) ≡ 0 mod xd/2 B̃(x) + A1(x)V(x) ≡ 0 mod xd/2

Step 2: solving the differential equation

Extension to solving A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0

Step 2: solving the differential equation

Extension to solving

Natural attempt: Try and decompose P into polynomials of half the degree as before and
obtain differential equations that these lower degree polynomials satisfy

A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0

Step 2: solving the differential equation

Extension to solving

Natural attempt: Try and decompose P into polynomials of half the degree as before and
obtain differential equations that these lower degree polynomials satisfy
Technical issue: Solutions are no longer unique and we cannot afford to branch at every
recursive step

A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0

Step 2: solving the differential equation

Extension to solving

Natural attempt: Try and decompose P into polynomials of half the degree as before and
obtain differential equations that these lower degree polynomials satisfy
Technical issue: Solutions are no longer unique and we cannot afford to branch at every
recursive step
Guruswami and Wang: Give an efficient way of getting our hands on a basis of the affine
space of solutions

A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0

Step 2: solving the differential equation

Extension to solving

Natural attempt: Try and decompose P into polynomials of half the degree as before and
obtain differential equations that these lower degree polynomials satisfy
Technical issue: Solutions are no longer unique and we cannot afford to branch at every
recursive step
Guruswami and Wang: Give an efficient way of getting our hands on a basis of the affine
space of solutions

We try to construct each of these basis elements one by one

A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0

Step 2: solving the differential equation

Extension to solving

Natural attempt: Try and decompose P into polynomials of half the degree as before and
obtain differential equations that these lower degree polynomials satisfy
Technical issue: Solutions are no longer unique and we cannot afford to branch at every
recursive step
Guruswami and Wang: Give an efficient way of getting our hands on a basis of the affine
space of solutions

We try to construct each of these basis elements one by one
For each such basis vector, we construct a proxy differential equation with a unique solution

A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0

Step 2: solving the differential equation

Extension to solving

Natural attempt: Try and decompose P into polynomials of half the degree as before and
obtain differential equations that these lower degree polynomials satisfy
Technical issue: Solutions are no longer unique and we cannot afford to branch at every
recursive step
Guruswami and Wang: Give an efficient way of getting our hands on a basis of the affine
space of solutions

We try to construct each of these basis elements one by one
For each such basis vector, we construct a proxy differential equation with a unique solution
And, a version of divide and conquer as we saw it works there

A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0

Open questions

Open questions

• Generalization to multivariate polynomials ? Many technical issues to overcome,

including a multivariate generalization of the differential equation solver.

Open questions

• Generalization to multivariate polynomials ? Many technical issues to overcome,

including a multivariate generalization of the differential equation solver.

• Understanding the state of standard noisy polynomial interpolation beyond the
Johnson bound

Open questions

• Generalization to multivariate polynomials ? Many technical issues to overcome,

including a multivariate generalization of the differential equation solver.

• Understanding the state of standard noisy polynomial interpolation beyond the
Johnson bound

• explicit construction of evaluation points for which the solution size is
small

Open questions

• Generalization to multivariate polynomials ? Many technical issues to overcome,

including a multivariate generalization of the differential equation solver.

• Understanding the state of standard noisy polynomial interpolation beyond the
Johnson bound

• explicit construction of evaluation points for which the solution size is
small

• efficient algorithms for noisy interpolation for such point sets

Open questions

• Generalization to multivariate polynomials ? Many technical issues to overcome,

including a multivariate generalization of the differential equation solver.

• Understanding the state of standard noisy polynomial interpolation beyond the
Johnson bound

• explicit construction of evaluation points for which the solution size is
small

• efficient algorithms for noisy interpolation for such point sets
• eventually, near linear time algorithms for noisy interpolation in this

regime	 	 	 	 	 	 	 	

Thank You!

