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A Consequence

Then, the number of polynomials  of degree at most d, such that 

is at most 1.  

Question 1: Given the set S and the function R, find P efficiently.  

R and P agree everywhere: this is univariate polynomial interpolation  
Here – polynomial interpolation in the presence of errors/noise.  
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Univariate Polynomial Interpolation with Noise

Many known algorithms for this problem, since the 60’s.  
 Peterson’s algorithm, Berlekamp-Massey, Berlekamp-Welch 
  
Elementary, but neat and beautiful, and widely useful.   

This talk : about generalizations of this problem 
  - higher multiplicities 
  - smaller number of agreements
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The Case of High Multiplicity

  vanishes with multiplicity at least s at  if all the derivatives of P of order at 
most (s-1) vanish at a.  

                                    

Fact:
A non-zero univariate polynomial of degree d over a field has at most d/s 
zeroes of multiplicity s.   

𝑃 ∈ 𝐹[𝑥] 𝑎 ∈ 𝐹

P(a) = P(1)(a) = ⋯ = P(s−1)(a) = 0
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Then, the number of polynomials  of degree at most d, such that      

  is at most 1.  

Agreement with mult at least s: for i in {0, 1, …, s-1},  

Noisy Hermite interpolation: Given the set S and a function R, find P efficiently. 

S ⊆ F, |S | = n, R : S → Fs

𝑃 (𝑥) ∈ 𝐹[𝑥]

|a ∈ S : P, R agree on a with mult s | >
n + d /s
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Ri(a) = P(i)(a)
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Noisy interpolation: tolerating more errors

Noisy polynomial interpolation: errors more than (n-d)/2 
Noisy Hermite interpolation: errors more than (n-d/s)/2  

The ‘close enough’ polynomial is no longer unique…but how many can there be ?  

Theorem [Johnson’ 62] 

Number of such polynomials is a polynomially bounded for agreement more than  for 

noise polynomial interpolation, and agreement more than  for noisy Hermite 
interpolation.  

Q. Can these polynomials be found efficiently ?

nd
nd /s
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Noisy poly interpolation up to Johnson bound

Theorem [Sudan 95, Guruswami-Sudan 98] 
Polynomial time algorithms for noisy polynomial interpolation up to Johnson bound.  

Extremely influential results: among the greatest hits in computer science, elementary and 
simple but very clever, re-introduces new ideas (the polynomial method), consequences in 
pseudorandomness, complexity theory, cryptography and discrete math.  
Subsequent attempts at improving the running time further.  

Theorem [Alekhnovich 2002] 
A nearly linear time algorithm for this problem, almost up to the Johnson bound. 



Noisy Hermite interpolation up to Johnson bound



Noisy Hermite interpolation up to Johnson bound

Theorem [Nielsen 2001] 



Noisy Hermite interpolation up to Johnson bound

Theorem [Nielsen 2001] 
A polynomial time algorithm for noisy Hermite interpolation up to Johnson bound. 



Noisy Hermite interpolation up to Johnson bound

Theorem [Nielsen 2001] 
A polynomial time algorithm for noisy Hermite interpolation up to Johnson bound. 

Builds on the ideas in Guruswami-Sudan and much more….. 



Noisy Hermite interpolation up to Johnson bound

Theorem [Nielsen 2001] 
A polynomial time algorithm for noisy Hermite interpolation up to Johnson bound. 

Builds on the ideas in Guruswami-Sudan and much more….. 
A nearly linear time algorithm for this remained elusive though.  
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Theorem [Nielsen 2001] 
A polynomial time algorithm for noisy Hermite interpolation up to Johnson bound. 

Builds on the ideas in Guruswami-Sudan and much more….. 
A nearly linear time algorithm for this remained elusive though.  

Kopparty 2014:  Is there a nearly linear time analog of Nielsen’s algorithm ? 
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Noisy polynomial interpolation: overall unclear…depends on the set S of evaluation points, 
and no algorithms are known.  

A very active area of research…many many open problems.   
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Theorem [Kopparty 13, Guruswami-Wang 14] 

For all  , and all  , there is an efficient algorithm for noisy Hermite 
interpolation for agreement greater than .  

Apriori, not even clear that the number of such polynomials is poly bounded.  
Note that we need agreement at least d/s to determine a deg d polynomial.  

Kopparty-Ron Zewi-Saraf-Wootters 2018: the number of polynomials output by the 
above algorithms is a constant.   

Q.Can all of these be done in nearly linear time ?   

ϵ > 0 s > 1/ϵ2

(1 + ϵ)d /s
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Our results

Theorem [Goyal, Harsha, K., Shankar 2023] 

For all  , and all  , there is a nearly linear time algorithm for noisy Hermite 
interpolation for agreement greater than .  

Some caveats : d/sn is a constant , characteristic of the underlying field is zero or greater 
than d. Good reasons for these caveats to exist.  

Answers Kopparty’s question in a general form  
Is an analog of Alekhnovich’s result, with even larger error tolerance 

ϵ > 0 s > 1/ϵ2

(1 + ϵ)d /s



Coding theoretic context



Coding theoretic context

Theorem [Goyal, Harsha, K., Shankar 2023] 
Over fields of zero or large characteristic, constant rate univariate multiplicity codes can be 
list decoded up to list-decoding capacity in nearly linear time.  
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Essentially, takes the algorithm of Guruswami-Wang for this problem, and tries to 
implement each of the steps in nearly linear time 
On the way, we stumble upon independently interesting questions and in some settings, 
interesting answers to them 

Two main steps:  
1. Construct a differential equation satisfied by all the close enough polynomials 
2. Solve the equation to recover all such polynomials
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Input: a function  and a parameter d 
L : list of all degree d polynomials P with large agreement with R 

1. Construct a differential equation satisfied by all close enough polynomials 

Construct a non-zero polynomial   

such that for all P in L,    

Why does such a Q exist ? 
How do we find it in near linear time ? 

R : S → Fs

Q(x, y1, ⋯, ym) = A0(x) + A1(x)y1 + ⋯ + Am(x)ym

Q(x, P(x), P(1)(x)⋯, P(m−1)(x)) = 0
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But suppose step 1 can be done…. 
2. Solve the differential equation to recover such polynomials 
Solve for degree d P such that   

 

How many such solutions are there ?  
We could be in trouble if there are more than constantly many solutions.  
In general, how do we go about solving such equations…and that too in near linear time ? 

Q(x, P(x), ⋯, P(m−1)(x)) = A0(x) + ∑
i

Ai(x)P(i−1)(x) ≡ 0
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Step 1: constructing the differential equation

Construct a differential equation satisfied by all close enough polynomials 

Construct a non-zero polynomial   

such that for all P in L,    

Set up a system of homogeneous linear equations in the coefficients of Q, with more 
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m = 2 for the rest of this discussion 

Q. Solve   

Simpler question : solve   

Solution is unique (if one exists) 

Can always find one using long division of univariate polynomials 

Can we do this in near linear time ?  

Yes, but not trivial.  

Results of Sieveking, Kung, Strassen from 1970s. Beautiful application of FFT, Newton iteration, 
divide and conquer. 
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Write  for U, V of degree d/2  
Thus, U and V must satisfy  

  and   

Two sub-problems of about half the size, together with pre and post processing that is 
nearly linear time using FFT 
Recurse….. 
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Step 2: solving the differential equation

Extension to solving  

Natural attempt: Try and decompose P into polynomials of half the degree as before and 
obtain differential equations that these lower degree polynomials satisfy 
Technical issue: Solutions are no longer unique and we cannot afford to branch at every 
recursive step 
Guruswami and Wang: Give an efficient way of getting our hands on a basis of the affine 
space of solutions 

We try to construct each of these basis elements one by one  
For each such basis vector, we construct a proxy differential equation with a unique solution 
And, a version of divide and conquer as we saw it works there 

A0(x) + A1(x)P(x) + A2(x)P(1)(x) ≡ 0
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Open questions

  
• Generalization to multivariate polynomials ? Many technical issues to overcome, 

including a multivariate generalization of the differential equation solver.  

• Understanding the state of standard noisy polynomial interpolation beyond the 
Johnson bound 

• explicit construction of evaluation points for which the solution size is 
small 

• efficient algorithms for noisy interpolation for such point sets 
• eventually, near linear time algorithms for noisy interpolation in this 

regime        



Thank You!


