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Graph °;
Fori € N, P;1s the graph with:
* V(P) ={1,2,-,i}
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- A graph G = (V, E) 1s H-free it G does not have H as an induced subgraph, 1.e., there 1s no

|
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S C V(G) and a byjective tunction ¢ : V(H) — S such that for h,h’ € V(H), {h,h’} € E(H) 1t and

only if {¢(h), p(h)} € E(G).
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t-free Graphs

A graph G = (V,E) 1s H-free 1t G does not have H as an induced subgraph, 1.e., there 1s no
S C V(G) and a byjective tunction ¢ : V(H) — S such that for h,h’ € V(H), {h,h’} € E(H) 1t and

only if {¢(h), (i)} € E(G).

P;-free graphs are disjoint union of cliques!



Bipartite Graphs

A graph G = (V, E) 1s bipartite 1t V can be partitioned into two sets, V; and V,, s.t.,

for each {u,v} € E(G),
XueV,andveyv,,or
XkveV,andu €V,

Graph G = (V, E)



Odd Cycle Transversal

Input: A graph G and a weight function w : V(G) - O

Task: Find a maximum weight induced bipartite subgraph of G, 1.e., find S C V(G)
of maximum total weight such that G[S] 1s bipartite.
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Some Relevant Results

3k |Chiarelli et al.] Odd Cycle Transversal 1s NP-hard on graph classes line graphs
and graphs of small girth.
— T hus, also NP-hard on graphs with no claws or a fixed length cycle.

3k [Chiarelli et al.] The problem 1s polynomial time solvable on H-free graphs
where H 1s the graph with a matching, or (sP; + P;).

3k [Okrasa et al.| On P,-free graphs the problem 1s polynomial time solvable.

3k |Dabrowski et al.| On P¢-free graphs the problem 1s NP-hard.

3k 'T'he above results imply (prior to our work), the only connected graph H for

which the status ot Odd Cycle 'Iransversal on H-free graphs was unknown was



Our Result

Odd Cycle Transversal admits a polynomial time algorithm on Ps-free graphs.
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1 For a graph G and a weight function
| | w:V(G) - Q,afamily € C2"%isa
| | solution covering family if for
| some S C V(G) of maximum total
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How do we find max. wt.
independent set in Hg?

S

2k G is Ps-free then so is Hy

2k Max. Wt. Independent Set on P-
-free graphs has a polynomial
time algorithm (LLokshtanov et al.)
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For a graph G and a weight function w : V(G) — Q, a family of vertex subsets € C 2"“ is a
solution covering famaily it tor some § C V(G) of maximum total weight where G[S] 1s

bipartite, there 1s a sub-tamily €’ C & such that:
Consider some S C V(G)

kS =Uyp X where G[S$] is bipartite.

3k Sets in €’ are pairwise disjoint

3% No edge between different sets in €, 1.e., for distinct X, Y € €', EX,Y) = @
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Solution Covering Family

X € 6, for ' = (S\V(C)) U X, G[S]1s
OR bipartite and w(S") > w(S) *

{9999)9"? D)} {999??9"9 DD}
ﬁ ~ solution covering famaly €




% [Trivial Case: V(C) = 1] Add {v} to &, for each v € V(G).
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X = N(C)\N(D) _Y=V(G)\NIC]

NO!

Can we directly remove
vertices outside N|[D]?
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Useful Definition

For a graph G, a set X C V(G) 1s a module in G 1t for all u,v € X, N (u)\X = N-(v)\X.
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T — X e Y= VGWIC]
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Yellow and pink sets are connected
components of G — N|D]
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ting Y -

e } X oo Y = V(G)\NIC]

= /V \V(/)

(Ps-IT€ENESS) ..ouviiiiiiiiissitinelebneiins it _

7 = N(D)\V(C)

NOTE: G[V(C)u X] 1s a
connected Ps-free graph.



Separating
B — X ey . Y=VOWIC]

\ Z = ND)\V(C)

[

Il : E
H :
I : :
ti E

G[V(C) U X] has a dominating set |§
D C V(C) U X which is P, or P;.

Guess t’is set!
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{ Y = N(CONNCT, -:i{ x o edge Y = V(G)\NI[C]
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7 = N(D)\V(C)

RESULT: We can
completely identity N[C]!



Separating -
{ — X Noedge

= N((C \

» Y = V(G)\N|[C]

(Ps-IT€ENESS) ..ouviiiiiiiiissitinelebneiins it _

Z = N(D)\V(C)

Delete neighbours of pink

vertices!
RESULT: We can

completely identity N[C]!



% [Handling V(C) > 2]




Separating .

o — X potioene Y = V(G)\NIC]

(Ps-freeness)

Z = N(D)\V(C)

X
Now, any replacement in the No edge
green region is good!
RESULT: We can

completely identity N[C]!
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{ NCINNE ,( X Noedge Y = V(G)\N[C]

Finding Replacement For C

(Ps-freeness)

Z = N(D)\V(C)
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3%k Partition remaining N[D]
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(Lokshtanov et al.)




Finding Replacement For C

Y = V(G)\NI[C]

3%k Partition remaining N[D]
into the two disjoint sets,
N(D,) and N(D,).

3% Find independent sets [,
and 1, of maximum

weights in N(D,) U D, and
N(D,) U D,, resp.

LLULisa
replacement for C!
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3 Independent Set admits a polynomial time algorithm on P-free graphs, which
also works for the counting version. Can we obtain such an algorithm for Odd
Cycle Iransversal?

3 The complete complexity classification Odd CGycle "Iransversal on H-free graph
where H 1s connected 1s tully known. What about disconnected Hs?

3k Complexity status of other classical graph problems on such graph classes?

Thanks!



