Odd Cycle Transversal on P_5 -free Graphs in Polynomial Time

Recent Grends in Algorithms, 2024

Akanksha Agrawal

(Joint work with P. Lima, D. Lokshtanov, P. Rzążewski, S. Saurabh, R. Sharma)

Indian Association of the Cultivation of Sciences, Kolkata

Graph P_i

For $i \in \mathbb{N}$, P_i is the graph with: * $V(P_i) = \{1, 2, \dots, i\}$ * $E(P_i) = \{\{j, j+1\} \mid j \in \{1, 2, \dots, i-1\}\}$

 P_5

only if $\{\phi(h), \phi(h')\} \in E(G)$.

A graph G = (V, E) is *H*-free if G does not have H as an induced subgraph, i.e., there is no $S \subseteq V(G)$ and a bijective function $\phi : V(H) \to S$ such that for $h, h' \in V(H), \{h, h'\} \in E(H)$ if and

only if $\{\phi(h), \phi(h')\} \in E(G)$.

A graph G = (V, E) is *H*-free if G does not have H as an induced subgraph, i.e., there is no $S \subseteq V(G)$ and a bijective function $\phi : V(H) \to S$ such that for $h, h' \in V(H), \{h, h'\} \in E(H)$ if and

NOT P_5 -free

only if $\{\phi(h), \phi(h')\} \in E(G)$.

A graph G = (V, E) is *H*-free if G does not have H as an induced subgraph, i.e., there is no $S \subseteq V(G)$ and a bijective function $\phi : V(H) \to S$ such that for $h, h' \in V(H), \{h, h'\} \in E(H)$ if and

only if $\{\phi(h), \phi(h')\} \in E(G)$.

A graph G = (V, E) is *H*-free if G does not have H as an induced subgraph, i.e., there is no $S \subseteq V(G)$ and a bijective function $\phi : V(H) \to S$ such that for $h, h' \in V(H), \{h, h'\} \in E(H)$ if and

 P_3 -free graphs are disjoint union of cliques!

Bipartite Graphs

A graph G = (V, E) is **bipartite** if V can be partitioned into two sets, V_1 and V_2 , s.t., for each $\{u, v\} \in E(G)$, **★** $u \in V_1$ and $v \in V_2$, or **★** $v \in V_1$ and $u \in V_2$

Graph G = (V, E)

Odd Cycle Transversal

Input: A graph *G* and a weight function $w : V(G) \rightarrow \mathbb{Q}$

Task: Find a maximum weight induced bipartite subgraph of G, i.e., find $S \subseteq V(G)$ of maximum total weight such that G[S] is bipartite.

★ [Chiarelli et al.] Odd Cycle Transvers and graphs of small girth.

* [Chiarelli et al.] Odd Cycle Transversal is NP-hard on graph classes line graphs

-Thus, also NP-hard on graphs with no claws or a fixed length cycle.

* [Chiarelli et al.] Odd Cycle Transversal is NP-hard on graph classes line graphs and graphs of small girth. -Thus, also NP-hard on graphs with no claws or a fixed length cycle.

* [Chiarelli et al.] The problem is polynomial time solvable on *H*-free graphs where *H* is the graph with a matching, or $(sP_1 + P_3)$.

- * [Chiarelli et al.] Odd Cycle Transversal is NP-hard on graph classes line graphs and graphs of small girth. -Thus, also NP-hard on graphs with no claws or a fixed length cycle.
- * [Chiarelli et al.] The problem is polynomial time solvable on *H*-free graphs where H is the graph with a matching, or $(sP_1 + P_3)$.
- * [Okrasa et al.] On P_4 -free graphs the problem is polynomial time solvable.

- * [Chiarelli et al.] Odd Cycle Transversal is NP-hard on graph classes line graphs and graphs of small girth. -Thus, also NP-hard on graphs with no claws or a fixed length cycle.
- * [Chiarelli et al.] The problem is polynomial time solvable on *H*-free graphs where *H* is the graph with a matching, or $(sP_1 + P_3)$.
- * [Okrasa et al.] On P_4 -free graphs the problem is polynomial time solvable.
- ***** [Dabrowski et al.] On P_6 -free graphs the problem is NP-hard.

- and graphs of small girth.
- * [Chiarelli et al.] The problem is polynomial time solvable on *H*-free graphs where *H* is the graph with a matching, or $(sP_1 + P_3)$.
- * [Okrasa et al.] On P_4 -free graphs the problem is polynomial time solvable.
- ***** [Dabrowski et al.] On P_6 -free graphs the problem is NP-hard.
- * The above results imply (prior to our work), the only connected graph H for $H = P_5$.

* [Chiarelli et al.] Odd Cycle Transversal is NP-hard on graph classes line graphs

-Thus, also NP-hard on graphs with no claws or a fixed length cycle.

which the status of Odd Cycle Transversal on *H*-free graphs was unknown was

Our Result

THEOREM

Odd Cycle Transversal admits a polynomial time algorithm on P_5 -free graphs.

Two Ingredients

THEOREM

Odd Cycle Transversal admits a polynomial time algorithm on P_5 -free graphs.

Ingredient 1: A polynomial-sized solution covering family.

solution covering family.

Ingredient 2: Translating solution to finding **independent sets on a P₅-free auxiliary graph** over a

Two Ingredients

THEOREM

Odd Cycle Transversal admits a polynomial time algorithm on *P*₅-free graphs.

Ingredient 1: A polynomial-sized solution cov

Ingredient 2: Translating solution to finding **independent sets on a** *P*₅**-free auxiliary graph** over a solution covering family.

For a graph G and a weight function $w : V(G) \to \mathbb{Q}$, a family of vertex subsets $\mathscr{C} \subseteq 2^{V(G)}$ is a **solution covering family** if for some $S \subseteq V(G)$ of maximum total weight where G[S] is bipartite, there is a sub-family $\mathscr{C}' \subseteq \mathscr{C}$ such that:

For a graph G and a weight function $w : V(G) \to \mathbb{Q}$, a family of vertex subsets $\mathscr{C} \subseteq 2^{V(G)}$ is a **solution covering family** if for some $S \subseteq V(G)$ of maximum total weight where G[S] is bipartite, there is a sub-family $\mathscr{C}' \subseteq \mathscr{C}$ such that:

For a graph *G* and a weight function $w : V(G) \to \mathbb{Q}$, a family of vertex subsets $\mathscr{C} \subseteq 2^{V(G)}$ is a **solution covering family** if for some $S \subseteq V(G)$ of maximum total weight where G[S] is bipartite, there is a sub-family $\mathscr{C}' \subseteq \mathscr{C}$ such that:

$$\bigstar S = \bigcup_{X \in \mathscr{C}'} X$$

For a graph G and a weight function $w : V(G) \to \mathbb{Q}$, a family of vertex subsets $\mathscr{C} \subseteq 2^{V(G)}$ is a **solution covering family** if for some $S \subseteq V(G)$ of maximum total weight where G[S] is bipartite, there is a sub-family $\mathscr{C}' \subseteq \mathscr{C}$ such that:

 $\bigstar S = \bigcup_{X \in \mathscr{C}'} X$

* Sets in C' are pairwise disjoint

For a graph *G* and a weight function $w : V(G) \to \mathbb{Q}$, a family of vertex subsets $\mathscr{C} \subseteq 2^{V(G)}$ is a **solution covering family** if for some $S \subseteq V(G)$ of maximum total weight where G[S] is bipartite, there is a sub-family $\mathscr{C}' \subseteq \mathscr{C}$ such that:

$$\bigstar S = \bigcup_{X \in \mathscr{C}'} X$$

* Sets in C' are pairwise disjoint

★ No edge between different sets in \mathscr{C}' , i.e., for distinct $X, Y \in \mathscr{C}', E(X, Y) = \emptyset$

For a graph G and a weight function $w : V(G) \to \mathbb{Q}$, a family of vertex subsets $\mathscr{C} \subseteq 2^{V(G)}$ is a **solution covering family** if for some $S \subseteq V(G)$ of maximum total weight where G[S] is bipartite, there is a sub-family $\mathscr{C}' \subseteq \mathscr{C}$ such that:

 $\bigstar S = \bigcup_{X \in \mathscr{C}'} X$

* Sets in C' are pairwise disjoint

★ No edge between different sets in \mathcal{C}' , i.e., for distinct $X, Y \in \mathcal{C}', E(X, Y) = \emptyset$

LEMMA

Given a P_5 -free graph G on n vertices and a weight function $w : V(G) \to \mathbb{Q}$, there is a polynomial-time algorithm that outputs a solution covering family of size $O(n^6)$.

Two Ingredients

THEOREM

Odd Cycle Transversal admits a polynomial time algorithm on P_5 -free graphs.

Ingredient 1: A polynomial-sized solution covering family.

Ingredient 2: Translating solution to finding **independent sets on a P₅-free auxiliary graph** over a solution covering family.

For a graph *G* and a weight function $w: V(G) \rightarrow \mathbb{Q}$, a family $\mathcal{C} \subseteq 2^{V(G)}$ is a *solution covering family* if for some $S \subseteq V(G)$ of maximum total weight where *G*[*S*] is bipartite, there is $\mathcal{C}' \subseteq \mathcal{C}$ such that:

★ $S = \bigcup_{X \in C'} X$,
★ Sets in C' are pairwise disjoint

★ for distinct $X, Y \in C'$,

 $E(X,Y) = \emptyset$

Consider a P_5 -free graph G and $w: V(G) \to \mathbb{Q}$ and its **solution covering family** $\mathscr{C} = \{X_1, X_2, \cdots, X_\ell\}$.

For a graph *G* and a weight function $w: V(G) \to \mathbb{Q}$, a family $\mathscr{C} \subseteq 2^{V(G)}$ is a *solution covering family* if for some $S \subseteq V(G)$ of maximum total weight where G[S] is bipartite, there is $\mathscr{C}' \subseteq \mathscr{C}$ such that: $\bigstar S = \bigcup_{X \in \mathscr{C}'} X,$

* Sets in C' are pairwise disjoint

★ for distinct $X, Y \in C'$,

 $E(X, Y) = \emptyset$

Consider a P_5 -free graph G and $w: V(G) \to \mathbb{Q}$ and its **solution covering family** $\mathscr{C} = \{X_1, X_2, \cdots, X_\ell\}$.

Create a graph $H_{\mathscr{C}}$ with $V(H_{\mathscr{C}}) = \mathscr{C}$, where, for distinct $X_i, X_i \in \mathscr{C}$, add $\{X_i, X_i\}$ to $E(H_{\mathscr{C}})$ if and only if: $X_i \cap X_i \neq \emptyset$ **OR** $E(X_i, X_i) \neq \emptyset$.

For a graph *G* and a weight function $w: V(G) \to \mathbb{Q}$, a family $\mathscr{C} \subseteq 2^{V(G)}$ is a *solution covering family* if for some $S \subseteq V(G)$ of maximum total weight where G[S] is bipartite, there is $\mathcal{C}' \subseteq \mathcal{C}$ such that: $\bigstar S = \bigcup_{X \in \mathscr{C}'} X,$

* Sets in C' are pairwise disjoint

★ for distinct $X, Y \in \mathscr{C}'$,

 $E(X, Y) = \emptyset$

Consider a P_5 -free graph G and $w : V(G) \to \mathbb{Q}$ and its solution covering family $\mathscr{C} = \{X_1, X_2, \dots, X_\ell\}$.

Create a graph $H_{\mathscr{C}}$ with $V(H_{\mathscr{C}}) = \mathscr{C}$, where, for distinct $X_i, X_i \in \mathscr{C}$, add $\{X_i, X_i\}$ to $E(H_{\mathscr{C}})$ if and only if: $X_i \cap X_i \neq \emptyset$ **OR** $E(X_i, X_i) \neq \emptyset$.

Create a weight function $\mathbf{q}: V(H_{\mathscr{C}}) \to \mathbb{Q}$, where for Z

For a graph *G* and a weight function $w: V(G) \to \mathbb{Q}$, a family $\mathscr{C} \subseteq 2^{V(G)}$ is a *solution covering family* if for some $S \subseteq V(G)$ of maximum total weight where G[S] is bipartite, there is $\mathcal{C}' \subseteq \mathcal{C}$ such that:

 $\bigstar S = \bigcup_{X \in \mathscr{C}'} X,$ * Sets in C' are pairwise disjoint

★ for distinct $X, Y \in \mathscr{C}'$,

 $E(X, Y) = \emptyset$

$$X \in \mathscr{C}, q(X) = \sum_{v \in X} w(v).$$

$$X \in \mathscr{C}, q(X) = \sum_{v \in X} w(v).$$

$$X \in \mathscr{C}, q(X) = \sum_{v \in X} w(v).$$

For $\mathscr{C}' \subseteq \mathscr{C}$, $S = \bigcup_{X \in \mathscr{C}'} X$ induces bipartite graph in G of weight t if and only if \mathscr{C}' is a independent set in $H_{\mathscr{C}}$ of weight t.

Consider a P_5 -free graph G and $w: V(G) \to \mathbb{Q}$ and its **solution covering family** $\mathscr{C} = \{X_1, X_2, \cdots, X_\ell\}$.

Create a graph $H_{\mathscr{C}}$ with $V(H_{\mathscr{C}}) = \mathscr{C}$, where, for distinct $X_i, X_i \in \mathscr{C}$, add $\{X_i, X_i\}$ to $E(H_{\mathscr{C}})$ if and only if: $X_i \cap X_i \neq \emptyset$ **OR** $E(X_i, X_i) \neq \emptyset$.

Create a weight function $\mathbf{q}: V(H_{\mathscr{C}}) \to \mathbb{Q}$, where for Σ

$$X \in \mathscr{C}, q(X) = \sum_{v \in X} w(v).$$

For $\mathscr{C}' \subseteq \mathscr{C}$, $S = \bigcup_{X \in \mathscr{C}'} X$ induces bipartite graph in G of weight t if and only if \mathscr{C}' is a independent set in $H_{\mathscr{C}}$ of weight t.

Create a graph $H_{\mathscr{C}}$ with $V(H_{\mathscr{C}}) = \mathscr{C}$, where, for distinct $X_i, X_i \in \mathscr{C}$, add $\{X_i, X_j\}$ to $E(H_{\mathscr{C}})$ if and only if: $X_i \cap X_i \neq \emptyset$ **OR** $E(X_i, X_i) \neq \emptyset$.

Create a weight function $q: V(H_{\mathscr{C}}) \to \mathbb{Q}$, where for Z

How do we find max. wt. independent set in $H_{\mathscr{C}}$?

* G is P₅-free then so is $H_{\mathscr{C}}$

* Max. Wt. Independent Set on P_5 -free graphs has a polynomial time algorithm (Lokshtanov et al.)

Consider a P_5 -free graph G and $w : V(G) \to \mathbb{Q}$ and its **solution covering family** $\mathscr{C} = \{X_1, X_2, \cdots, X_\ell\}$.

$$X \in \mathscr{C}, q(X) = \sum_{v \in X} w(v).$$

 X_{ℓ}

Two Ingredients

THEOREM

Odd Cycle Transversal admits a polynomial time algorithm on P_5 -free graphs.

Ingredient 1: A polynomial-sized solution covering family.

Ingredient 2: Translating solution to finding independent sets on a P₅-free auxiliary graph over a solution covering family.

Two Ingredients

THEOREM

Odd Cycle Transversal admits a polynomial time algorithm on *P*₅-free graphs.

Ingredient 1: A polynomial-sized solution covering family.

Ingredient 2: Translating solution to finding **independent sets on a** *P*₅**-free auxiliary graph** over a solution covering family.

Useful Definition

For a graph G, a set $X \subseteq V(G)$ is a *module* in G if for all $u, v \in X$, $N_G(u) \setminus X = N_G(v) \setminus X$.

For a graph G and a weight function $w : V(G) \to \mathbb{Q}$, a family of vertex subsets $\mathscr{C} \subseteq 2^{V(G)}$ is a **solution covering family** if for some $S \subseteq V(G)$ of maximum total weight where G[S] is bipartite, there is a sub-family $\mathscr{C}' \subseteq \mathscr{C}$ such that:

 $\bigstar S = \bigcup_{X \in \mathscr{C}'} X$

* Sets in C' are pairwise disjoint

★ No edge between different sets in \mathcal{C}' , i.e., for distinct $X, Y \in \mathcal{C}', E(X, Y) = \emptyset$

LEMMA

Given a P_5 -free graph G on n vertices and a weight function $w : V(G) \to \mathbb{Q}$, there is a polynomial-time algorithm that outputs a solution covering family of size $O(n^6)$.

For a graph G and a weight function $w : V(G) \to \mathbb{Q}$, a family of vertex subsets $\mathscr{C} \subseteq 2^{V(G)}$ is a **solution covering family** if for some $S \subseteq V(G)$ of maximum total weight where G[S] is bipartite, there is a sub-family $\mathscr{C}' \subseteq \mathscr{C}$ such that:

 $\bigstar S = \bigcup_{X \in \mathscr{C}'} X$

* Sets in C' are pairwise disjoint

★ No edge between different sets in \mathcal{C}' , i.e., for distinct $X, Y \in \mathcal{C}', E(X, Y) = \emptyset$

LEMMA

Given a P_5 -free graph G on n vertices and a weight function $w : V(G) \to \mathbb{Q}$, there is a polynomial-time algorithm that outputs a solution covering family of size $O(n^6)$.

Consider some $S \subseteq V(G)$ **where** G[S] **is bipartite.**

$V(C) \in \mathscr{C}$

V(C)

solution covering family C

OR

solution covering family C

$\exists X \in \mathscr{C}, \text{ for } S' = (S \setminus V(C)) \cup X, G[S'] \text{ is }$ bipartite and $w(S') \ge w(S)$

solution covering family C

***** [Trivial Case: V(C) = 1] Add {v} to \mathcal{C} , for each $v \in V(G)$.

***** [Handling $V(C) \ge 2$]

Known Property of conn. *P*₅**-free graphs**

C has a dominating P_2 or P_3 , i.e., $D \subseteq V(C)$, such that $V(C) \subseteq N_G[D]$.

***** [Handling $V(C) \ge 2$]

Known Property of conn. *P*₅**-free graphs**

C has a dominating P_2 or P_3 , i.e., $D \subseteq V(C)$, such that $V(C) \subseteq N_G[D]$.

Guess this set!

***** [Handling $V(C) \ge 2$]

Known Property of conn. *P*₅**-free graphs**

C has a dominating P_2 or P_3 , i.e., $D \subseteq V(C)$, such that $V(C) \subseteq N_G[D]$.

Guess this set!

Can we directly remove vertices outside *N*[*D*]?

Useful Definition

For a graph G, a set $X \subseteq V(G)$ is a *module* in G if for all $u, v \in X$, $N_G(u) \setminus X = N_G(v) \setminus X$.

*** [Handling** $V(C) \ge 2$]

Finding Replacement For C

Remaining neighbours of D

* Partition *remaining* N[D]into the two disjoint sets, $N(D_1)$ and $N(D_2)$.

Finding Replacement For C

- Partition remaining N[D] into the two disjoint sets, $N(D_1)$ and $N(D_2)$.
- ***** Find independent sets I_1 and I_2 of maximum weights in $N(D_2) \cup D_1$ and $N(D_1) \cup D_2$, resp.

Finding Replacement For C

- * Partition *remaining* N[D]into the two disjoint sets, $N(D_1)$ and $N(D_2)$.
- ★ Find independent sets I_1 and I_2 of maximum weights in $N(D_2) \cup D_1$ and $N(D_1) \cup D_2$, resp.

 $I_1 \cup I_2$ is a replacement for *C*!

For a graph *G* and a weight function $w : V(G) \to \mathbb{Q}$, a family of vertex subsets $\mathscr{C} \subseteq 2^{V(G)}$ is a **solution covering family** if for any $S \subseteq V(G)$ of maximum total weight where G[S] is bipartite, there is a sub-family $\mathscr{C}' \subseteq \mathscr{C}$ such that:

 $\bigstar S = \bigcup_{X \in \mathscr{C}'} X$

* Sets in C' are pairwise disjoint

★ No edge between different sets in \mathcal{C}' , i.e., for distinct $X, Y \in \mathcal{C}', E(X, Y) = \emptyset$

LEMMA

Given a P_5 -free graph G on n vertices and a weight function $w : V(G) \to \mathbb{Q}$, there is a polynomial-time algorithm that outputs a solution covering family of size $O(n^6)$.

Two Ingredients

THEOREM

Odd Cycle Transversal admits a polynomial time algorithm on P_5 -free graphs.

Ingredient 1: A polynomial-sized solution covering family.

solution covering family.

Ingredient 2: Translating solution to finding **independent sets on a P₅-free auxiliary graph** over a

* Independent Set admits a polynomial time algorithm on P_i -free graphs, which Cycle Transversal?

also works for the counting version. Can we obtain such an algorithm for Odd

- * Independent Set admits a polynomial time algorithm on P_i -free graphs, which Cycle Transversal?
- where *H* is connected is fully known. What about disconnected *H*s?

also works for the counting version. Can we obtain such an algorithm for Odd

* The complete complexity classification Odd Cycle Transversal on *H*-free graph

- * Independent Set admits a polynomial time algorithm on P_i -free graphs, which Cycle Transversal?
- where *H* is connected is fully known. What about disconnected *H*s?
- * Complexity status of other classical graph problems on such graph classes?

also works for the counting version. Can we obtain such an algorithm for Odd

* The complete complexity classification Odd Cycle Transversal on *H*-free graph

- * Independent Set admits a polynomial time algorithm on P_i -free graphs, which Cycle Transversal?
- where *H* is connected is fully known. What about disconnected *H*s?
- * Complexity status of other classical graph problems on such graph classes?

also works for the counting version. Can we obtain such an algorithm for Odd

* The complete complexity classification Odd Cycle Transversal on *H*-free graph

