
Odd Cycle Transversal on -free Graphs in Polynomial TimeP5

Recent Trends in Algorithms, 2024

Akanksha Agrawal

Indian Association of the Cultivation of Sciences, Kolkata

(Joint work with P. Lima, D. Lokshtanov, P. Rzążewski, S. Saurabh, R. Sharma)

Graph Pi

For , is the graph with:

i ∈ ℕ Pi
V(Pi) = {1,2,⋯, i}
E(Pi) = {{j, j + 1} ∣ j ∈ {1,2,⋯, i − 1}}

P5

1 2 3 4 5

-free GraphsH
A graph is -free if does not have as an induced subgraph, i.e., there is no

 and a bijective function such that for , if and
only if .

G = (V, E) H G H
S ⊆ V(G) ϕ : V(H) → S h, h′￼ ∈ V(H) {h, h′￼} ∈ E(H)

{ϕ(h), ϕ(h′￼)} ∈ E(G)

-free GraphsH
A graph is -free if does not have as an induced subgraph, i.e., there is no

 and a bijective function such that for , if and
only if .

G = (V, E) H G H
S ⊆ V(G) ϕ : V(H) → S h, h′￼ ∈ V(H) {h, h′￼} ∈ E(H)

{ϕ(h), ϕ(h′￼)} ∈ E(G)

v1 v2 v3 v4 v5

NOT -freeP5

G
v6 v7

-free GraphsH
A graph is -free if does not have as an induced subgraph, i.e., there is no

 and a bijective function such that for , if and
only if .

G = (V, E) H G H
S ⊆ V(G) ϕ : V(H) → S h, h′￼ ∈ V(H) {h, h′￼} ∈ E(H)

{ϕ(h), ϕ(h′￼)} ∈ E(G)

v1 v2 v3 v4 v5

G

-freeP5

v6 v7

-free GraphsH
A graph is -free if does not have as an induced subgraph, i.e., there is no

 and a bijective function such that for , if and
only if .

G = (V, E) H G H
S ⊆ V(G) ϕ : V(H) → S h, h′￼ ∈ V(H) {h, h′￼} ∈ E(H)

{ϕ(h), ϕ(h′￼)} ∈ E(G)

-free graphs are disjoint union of cliques!P3

Bipartite Graphs

A graph is bipartite if can be partitioned into two sets, and , s.t.,
for each ,

 and , or
 and

G = (V, E) V V1 V2
{u, v} ∈ E(G)

u ∈ V1 v ∈ V2
v ∈ V1 u ∈ V2

V1 V2

Graph G = (V, E)

Odd Cycle Transversal
Input: A graph and a weight function

Task: Find a maximum weight induced bipartite subgraph of , i.e., find
of maximum total weight such that is bipartite.

G 𝗐 : V(G) → ℚ

G S ⊆ V(G)
G[S]

Graph G

V1 V2

Some Relevant Results

[Chiarelli et al.] Odd Cycle Transversal is NP-hard on graph classes line graphs
and graphs of small girth.

—Thus, also NP-hard on graphs with no claws or a fixed length cycle.

Some Relevant Results

[Chiarelli et al.] Odd Cycle Transversal is NP-hard on graph classes line graphs
and graphs of small girth.

—Thus, also NP-hard on graphs with no claws or a fixed length cycle.

[Chiarelli et al.] The problem is polynomial time solvable on -free graphs
where is the graph with a matching, or .

H
H (sP1 + P3)

Some Relevant Results

[Chiarelli et al.] Odd Cycle Transversal is NP-hard on graph classes line graphs
and graphs of small girth.

—Thus, also NP-hard on graphs with no claws or a fixed length cycle.

[Chiarelli et al.] The problem is polynomial time solvable on -free graphs
where is the graph with a matching, or .

[Okrasa et al.] On -free graphs the problem is polynomial time solvable.

H
H (sP1 + P3)

P4

Some Relevant Results

[Chiarelli et al.] Odd Cycle Transversal is NP-hard on graph classes line graphs
and graphs of small girth.

—Thus, also NP-hard on graphs with no claws or a fixed length cycle.

[Chiarelli et al.] The problem is polynomial time solvable on -free graphs
where is the graph with a matching, or .

[Okrasa et al.] On -free graphs the problem is polynomial time solvable.

[Dabrowski et al.] On -free graphs the problem is NP-hard.

H
H (sP1 + P3)

P4

P6

Some Relevant Results

[Chiarelli et al.] Odd Cycle Transversal is NP-hard on graph classes line graphs
and graphs of small girth.

—Thus, also NP-hard on graphs with no claws or a fixed length cycle.

[Chiarelli et al.] The problem is polynomial time solvable on -free graphs
where is the graph with a matching, or .

[Okrasa et al.] On -free graphs the problem is polynomial time solvable.

[Dabrowski et al.] On -free graphs the problem is NP-hard.

The above results imply (prior to our work), the only connected graph for
which the status of Odd Cycle Transversal on -free graphs was unknown was

.

H
H (sP1 + P3)

P4

P6

H
H

H = P5

Our Result

Odd Cycle Transversal admits a polynomial time algorithm on -free graphs.P5

THEOREM

Two Ingredients

Odd Cycle Transversal admits a polynomial time algorithm on -free graphs.P5

THEOREM

Ingredient 1: A polynomial-sized solution covering family.

Ingredient 2: Translating solution to finding independent sets on a -free auxiliary graph over a
solution covering family.

P5

Two Ingredients

Odd Cycle Transversal admits a polynomial time algorithm on -free graphs.P5

THEOREM

Ingredient 1: A polynomial-sized solution covering family.

Ingredient 2: Translating solution to finding independent sets on a -free auxiliary graph over a
solution covering family.

P5

???

Solution Covering Family

For a graph and a weight function , a family of vertex subsets is a
solution covering family if for some of maximum total weight where is
bipartite, there is a sub-family such that:

G 𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G) G[S]
𝒞′￼ ⊆ 𝒞

{ }, , , , , ,…, , ,

 is bipartiteG[S]

Solution Covering Family

For a graph and a weight function , a family of vertex subsets is a
solution covering family if for some of maximum total weight where is
bipartite, there is a sub-family such that:

G 𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G) G[S]
𝒞′￼ ⊆ 𝒞

{ }, , , , , ,…, , ,

 is bipartiteG[S]

Solution Covering Family

For a graph and a weight function , a family of vertex subsets is a
solution covering family if for some of maximum total weight where is
bipartite, there is a sub-family such that:

G 𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G) G[S]
𝒞′￼ ⊆ 𝒞

S = ∪X∈𝒞′￼
X

Solution Covering Family

For a graph and a weight function , a family of vertex subsets is a
solution covering family if for some of maximum total weight where is
bipartite, there is a sub-family such that:

Sets in are pairwise disjoint

G 𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G) G[S]
𝒞′￼ ⊆ 𝒞

S = ∪X∈𝒞′￼
X

𝒞′￼

Solution Covering Family

For a graph and a weight function , a family of vertex subsets is a
solution covering family if for some of maximum total weight where is
bipartite, there is a sub-family such that:

Sets in are pairwise disjoint

No edge between different sets in , i.e., for distinct ,

G 𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G) G[S]
𝒞′￼ ⊆ 𝒞

S = ∪X∈𝒞′￼
X

𝒞′￼

𝒞′￼ X, Y ∈ 𝒞′￼ E(X, Y) = ∅

Solution Covering Family

For a graph and a weight function , a family of vertex subsets is a
solution covering family if for some of maximum total weight where is
bipartite, there is a sub-family such that:

Sets in are pairwise disjoint

No edge between different sets in , i.e., for distinct ,

G 𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G) G[S]
𝒞′￼ ⊆ 𝒞

S = ∪X∈𝒞′￼
X

𝒞′￼

𝒞′￼ X, Y ∈ 𝒞′￼ E(X, Y) = ∅

Given a -free graph on vertices and a weight function , there is a
polynomial-time algorithm that outputs a solution covering family of size .

P5 G n 𝗐 : V(G) → ℚ
O(n6)

LEMMA

Two Ingredients

Odd Cycle Transversal admits a polynomial time algorithm on -free graphs.P5

THEOREM

Ingredient 1: A polynomial-sized solution covering family.

Ingredient 2: Translating solution to finding independent sets on a -free auxiliary graph over a
solution covering family.

P5

Extracting Solution From Solution Covering Family
For a graph and a weight function

, a family is a
solution covering family if for
some of maximum total
weight where is bipartite, there is

 such that:
,

Sets in are pairwise disjoint
for distinct ,

G
𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G)
G[S]

𝒞′￼⊆ 𝒞
S = ∪X∈𝒞′￼

X
𝒞′￼

X, Y ∈ 𝒞′￼

E(X, Y) = ∅

RECALL

Extracting Solution From Solution Covering Family

Consider a -free graph and and its solution covering family .

Create a graph with , where, for distinct , add to if and only if:
 OR .

Create a weight function , where for , .

P5 G 𝗐 : V(G) → ℚ 𝒞 = {X1, X2, ⋯Xℓ}

H𝒞 V(H𝒞) = 𝒞 Xi, Xj ∈ 𝒞 {Xi, Xj} E(H𝒞)
Xi ∩ Xj ≠ ∅ E(Xi, Xj) ≠ ∅

𝗊 : V(H𝒞) → ℚ X ∈ 𝒞 𝗊(X) = ∑
v∈X

𝗐(v)

For a graph and a weight function
, a family is a

solution covering family if for
some of maximum total
weight where is bipartite, there is

 such that:
,

Sets in are pairwise disjoint
for distinct ,

G
𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G)
G[S]

𝒞′￼⊆ 𝒞
S = ∪X∈𝒞′￼

X
𝒞′￼

X, Y ∈ 𝒞′￼

E(X, Y) = ∅

RECALL

Extracting Solution From Solution Covering Family

Consider a -free graph and and its solution covering family .

Create a graph with , where, for distinct , add to if and only if:
 OR .

Create a weight function , where for , .

P5 G 𝗐 : V(G) → ℚ 𝒞 = {X1, X2, ⋯Xℓ}

H𝒞 V(H𝒞) = 𝒞 Xi, Xj ∈ 𝒞 {Xi, Xj} E(H𝒞)
Xi ∩ Xj ≠ ∅ E(Xi, Xj) ≠ ∅

𝗊 : V(H𝒞) → ℚ X ∈ 𝒞 𝗊(X) = ∑
v∈X

𝗐(v)

X1 X2 Xi Xj Xℓ
Add the edge if and only if

 OR Xi ∩ Xj ≠ ∅ E(Xi, Xj) ≠ ∅

For a graph and a weight function
, a family is a

solution covering family if for
some of maximum total
weight where is bipartite, there is

 such that:
,

Sets in are pairwise disjoint
for distinct ,

G
𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G)
G[S]

𝒞′￼⊆ 𝒞
S = ∪X∈𝒞′￼

X
𝒞′￼

X, Y ∈ 𝒞′￼

E(X, Y) = ∅

RECALL

Extracting Solution From Solution Covering Family

Consider a -free graph and and its solution covering family .

Create a graph with , where, for distinct , add to if and only if:
 OR .

Create a weight function , where for , .

P5 G 𝗐 : V(G) → ℚ 𝒞 = {X1, X2, ⋯Xℓ}

H𝒞 V(H𝒞) = 𝒞 Xi, Xj ∈ 𝒞 {Xi, Xj} E(H𝒞)
Xi ∩ Xj ≠ ∅ E(Xi, Xj) ≠ ∅

𝗊 : V(H𝒞) → ℚ X ∈ 𝒞 𝗊(X) = ∑
v∈X

𝗐(v)

X1 X2 Xi Xj Xℓ
Add the edge if and only if

 OR Xi ∩ Xj ≠ ∅ E(Xi, Xj) ≠ ∅

𝗊(Xi) = ∑
v∈Xi

𝗐(v)
For a graph and a weight function

, a family is a
solution covering family if for
some of maximum total
weight where is bipartite, there is

 such that:
,

Sets in are pairwise disjoint
for distinct ,

G
𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G)
G[S]

𝒞′￼⊆ 𝒞
S = ∪X∈𝒞′￼

X
𝒞′￼

X, Y ∈ 𝒞′￼

E(X, Y) = ∅

RECALL

Extracting Solution From Solution Covering Family

X1 X2 Xi Xj Xℓ
Add the edge if and only if

 OR Xi ∩ Xj ≠ ∅ E(Xi, Xj) ≠ ∅

𝗊(Xi) = ∑
v∈Xi

𝗐(v)S

Consider a -free graph and and its solution covering family .

Create a graph with , where, for distinct , add to if and only if:
 OR .

Create a weight function , where for , .

P5 G 𝗐 : V(G) → ℚ 𝒞 = {X1, X2, ⋯Xℓ}

H𝒞 V(H𝒞) = 𝒞 Xi, Xj ∈ 𝒞 {Xi, Xj} E(H𝒞)
Xi ∩ Xj ≠ ∅ E(Xi, Xj) ≠ ∅

𝗊 : V(H𝒞) → ℚ X ∈ 𝒞 𝗊(X) = ∑
v∈X

𝗐(v)

For a graph and a weight function
, a family is a

solution covering family if for
some of maximum total
weight where is bipartite, there is

 such that:
,

Sets in are pairwise disjoint
for distinct ,

G
𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G)
G[S]

𝒞′￼⊆ 𝒞
S = ∪X∈𝒞′￼

X
𝒞′￼

X, Y ∈ 𝒞′￼

E(X, Y) = ∅

RECALL

Extracting Solution From Solution Covering Family

X1 X2 Xi Xj Xℓ
Add the edge if and only if

 OR Xi ∩ Xj ≠ ∅ E(Xi, Xj) ≠ ∅

𝗊(Xi) = ∑
v∈Xi

𝗐(v)S

Consider a -free graph and and its solution covering family .

Create a graph with , where, for distinct , add to if and only if:
 OR .

Create a weight function , where for , .

P5 G 𝗐 : V(G) → ℚ 𝒞 = {X1, X2, ⋯Xℓ}

H𝒞 V(H𝒞) = 𝒞 Xi, Xj ∈ 𝒞 {Xi, Xj} E(H𝒞)
Xi ∩ Xj ≠ ∅ E(Xi, Xj) ≠ ∅

𝗊 : V(H𝒞) → ℚ X ∈ 𝒞 𝗊(X) = ∑
v∈X

𝗐(v)

For , induces bipartite graph in of weight if and only if is a independent set in of weight .𝒞′￼⊆ 𝒞 S = ∪X∈𝒞′￼
X G t 𝒞′￼ H𝒞 t

For a graph and a weight function
, a family is a

solution covering family if for
some of maximum total
weight where is bipartite, there is

 such that:
,

Sets in are pairwise disjoint
for distinct ,

G
𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G)
G[S]

𝒞′￼⊆ 𝒞
S = ∪X∈𝒞′￼

X
𝒞′￼

X, Y ∈ 𝒞′￼

E(X, Y) = ∅

RECALL

Extracting Solution From Solution Covering Family

X1 X2 Xi Xj Xℓ
Add the edge if and only if

 OR Xi ∩ Xj ≠ ∅ E(Xi, Xj) ≠ ∅

𝗊(Xi) = ∑
v∈Xi

𝗐(v)S How do we find max. wt.
independent set in ?H𝒞

Consider a -free graph and and its solution covering family .

Create a graph with , where, for distinct , add to if and only if:
 OR .

Create a weight function , where for , .

P5 G 𝗐 : V(G) → ℚ 𝒞 = {X1, X2, ⋯Xℓ}

H𝒞 V(H𝒞) = 𝒞 Xi, Xj ∈ 𝒞 {Xi, Xj} E(H𝒞)
Xi ∩ Xj ≠ ∅ E(Xi, Xj) ≠ ∅

𝗊 : V(H𝒞) → ℚ X ∈ 𝒞 𝗊(X) = ∑
v∈X

𝗐(v)

For , induces bipartite graph in of weight if and only if is a independent set in of weight .𝒞′￼⊆ 𝒞 S = ∪X∈𝒞′￼
X G t 𝒞′￼ H𝒞 t

Extracting Solution From Solution Covering Family

X1 X2 Xi Xj Xℓ
Add the edge if and only if

 OR Xi ∩ Xj ≠ ∅ E(Xi, Xj) ≠ ∅

𝗊(Xi) = ∑
v∈Xi

𝗐(v)S How do we find max. wt.
independent set in ?H𝒞

 is -free then so is

Max. Wt. Independent Set on
-free graphs has a polynomial
time algorithm (Lokshtanov et al.)

G P5 H𝒞

P5

Consider a -free graph and and its solution covering family .

Create a graph with , where, for distinct , add to if and only if:
 OR .

Create a weight function , where for , .

P5 G 𝗐 : V(G) → ℚ 𝒞 = {X1, X2, ⋯Xℓ}

H𝒞 V(H𝒞) = 𝒞 Xi, Xj ∈ 𝒞 {Xi, Xj} E(H𝒞)
Xi ∩ Xj ≠ ∅ E(Xi, Xj) ≠ ∅

𝗊 : V(H𝒞) → ℚ X ∈ 𝒞 𝗊(X) = ∑
v∈X

𝗐(v)

For , induces bipartite graph in of weight if and only if is a independent set in of weight .𝒞′￼⊆ 𝒞 S = ∪X∈𝒞′￼
X G t 𝒞′￼ H𝒞 t

Two Ingredients

Odd Cycle Transversal admits a polynomial time algorithm on -free graphs.P5

THEOREM

Ingredient 1: A polynomial-sized solution covering family.

Ingredient 2: Translating solution to finding independent sets on a -free auxiliary graph over a
solution covering family.

P5

Two Ingredients

Odd Cycle Transversal admits a polynomial time algorithm on -free graphs.P5

THEOREM

Ingredient 1: A polynomial-sized solution covering family.

Ingredient 2: Translating solution to finding independent sets on a -free auxiliary graph over a
solution covering family.

P5

Useful Definition

For a graph , a set is a module in if for all , .G X ⊆ V(G) G u, v ∈ X NG(u)∖X = NG(v)∖X

X

N(X)
V(G)∖N[X]

u v

Solution Covering Family

For a graph and a weight function , a family of vertex subsets is a
solution covering family if for some of maximum total weight where is
bipartite, there is a sub-family such that:

Sets in are pairwise disjoint

No edge between different sets in , i.e., for distinct ,

G 𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G) G[S]
𝒞′￼ ⊆ 𝒞

S = ∪X∈𝒞′￼
X

𝒞′￼

𝒞′￼ X, Y ∈ 𝒞′￼ E(X, Y) = ∅

Given a -free graph on vertices and a weight function , there is a
polynomial-time algorithm that outputs a solution covering family of size .

P5 G n 𝗐 : V(G) → ℚ
O(n6)

LEMMA

Solution Covering Family

For a graph and a weight function , a family of vertex subsets is a
solution covering family if for some of maximum total weight where is
bipartite, there is a sub-family such that:

Sets in are pairwise disjoint

No edge between different sets in , i.e., for distinct ,

G 𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G) G[S]
𝒞′￼ ⊆ 𝒞

S = ∪X∈𝒞′￼
X

𝒞′￼

𝒞′￼ X, Y ∈ 𝒞′￼ E(X, Y) = ∅

Given a -free graph on vertices and a weight function , there is a
polynomial-time algorithm that outputs a solution covering family of size .

P5 G n 𝗐 : V(G) → ℚ
O(n6)

LEMMA

Consider some
where is bipartite.

S ⊆ V(G)
G[S]

Solution Covering Family
G[S]

C

Solution Covering Family
G[S]

C

{ }, , , , , ,…, , ,
solution covering family 𝒞

OR V(C) ∈ 𝒞
V(C)

Solution Covering Family
G[S]

C

{ }, , , , , ,…, , ,
solution covering family 𝒞

{ }, , , , , ,…, , ,

OR V(C) ∈ 𝒞

solution covering family 𝒞

, for , is
bipartite and

∃X ∈ 𝒞 S′￼ = (S∖V(C)) ∪ X G[S′￼]
𝗐(S′￼) ≥ 𝗐(S)

V(C) X

G[S′￼]

G[X]

Solution Covering Family
G[S]

C

[Trivial Case:] Add to , for each . |V(C) | = 1 {v} 𝒞 v ∈ V(G)

Solution Covering Family
G[S]

C

[Handling]|V(C) | ≥ 2

 has a dominating or , i.e., , such that .C P2 P3 D ⊆ V(C) V(C) ⊆ NG[D]
Known Property of conn. -free graphsP5

Solution Covering Family
G[S]

C

[Handling]|V(C) | ≥ 2

 has a dominating or , i.e., , such that .C P2 P3 D ⊆ V(C) V(C) ⊆ NG[D]
Known Property of conn. -free graphsP5

Guess this set!

Analysing Structure

Z = N(D)∖V(C)

X = N(C)∖N(D)

D

C

Y = V(G)∖N[C]

Solution Covering Family
G[S]

C

[Handling]|V(C) | ≥ 2

 has a dominating or , i.e., , such that .C P2 P3 D ⊆ V(C) V(C) ⊆ NG[D]
Known Property of conn. -free graphsP5

Guess this set!

Analysing Structure
X = N(C)∖N(D)

D

C

Y = V(G)∖N[C]

Z = N(D)∖V(C)

Analysing Structure
X = N(C)∖N(D)

Can we directly remove
vertices outside ?N[D]D

C

Y = V(G)∖N[C]

Z = N(D)∖V(C)

Analysing Structure

C

Can we directly remove
vertices outside ?N[D]D

C′￼′￼

NO!

̂C

Y = V(G)∖N[C]X = N(C)∖N(D)

Z = N(D)∖V(C)

Analysing Structure
Y = V(G)∖N[C]

C
No edge

No edge
(-freeness)P5

D

X = N(C)∖N(D)

Z = N(D)∖V(C)

Useful Definition

For a graph , a set is a module in if for all , .G X ⊆ V(G) G u, v ∈ X NG(u)∖X = NG(v)∖X

X

N(X)
V(G)∖N[X]

u v

Analysing Structure
Y = V(G)∖N[C]

C
No edge

No edge
(-freeness)P5

D

Module

Module

Module

Module

Module

Module

Non-module

Non-module

X = N(C)∖N(D)

(-freeness)P5

Z = N(D)∖V(C)

What we precisely know till now?
Y = V(G)∖N[C]

C
No edge

No edge
(-freeness)P5

Module

Module

Module

Module

Module

Module

Non-module

Non-module

KNOWN: and D N[D]
D

N[D]
Yellow and pink sets are connected

components of G − N[D]

X = N(C)∖N(D)

Z = N(D)∖V(C)

D

What we precisely know till now?
Y = V(G)∖N[C]

C
No edge

No edge
(-freeness)P5

Module

Module

Module

Module

Module

Module

Non-module

Non-module

KNOWN: and D N[D]
D

N[D]
Yellow and pink sets are connected

components of G − N[D]

Delete non-modules!

X = N(C)∖N(D)

Z = N(D)∖V(C)

D

What we precisely know till now?
Y = V(G)∖N[C]

C
No edge

No edge
(-freeness)P5

Module

Module

Module

Module

Module

Module

KNOWN: and D N[D]
D

N[D]
Yellow and pink sets are connected

components of G − N[D]

Module

Module

X = N(C)∖N(D)

Z = N(D)∖V(C)

D

Separating Y
Y = V(G)∖N[C]

C
No edge

No edge
(-freeness)P5

Module

Module

Module

Module

Module

Module

KNOWN: and D N[D]
D

N[D]
Yellow and pink sets are connected

components of G − N[D]

Module

Module

X = N(C)∖N(D)

Z = N(D)∖V(C)

D

Y = V(G)∖N[C]

C
No edge

No edge
(-freeness)P5

Module

Module

Module

Module

Module

Module

D

N[D]

Module

Module

NOTE: is a
connected -free graph.

G[V(C) ∪ X]
P5

X = N(C)∖N(D)

Z = N(D)∖V(C)

D

Separating Y

Y = V(G)∖N[C]

C
No edge

No edge
(-freeness)P5

Module

Module

Module

Module

Module

Module

D

N[D]

Module

Module

NOTE: is a
connected -free graph.

G[V(C) ∪ X]
P5

 has a dominating set
 which is or .

G[V(C) ∪ X]̂D ⊆ V(C) ∪ X P2 P3

For conn. -free graphsP5

Guess this set!

X = N(C)∖N(D)

Z = N(D)∖V(C)

D

Separating Y

Y = V(G)∖N[C]

C
No edge

No edge
(-freeness)P5

Module

Module

Module

Module

Module

Module

D

N[D]

Module

Module

RESULT: We can
completely identify !N[C]

X = N(C)∖N(D)

Z = N(D)∖V(C)

D

Separating Y

Y = V(G)∖N[C]

C
No edge

No edge
(-freeness)P5

Module

Module

Module

Module

Module

Module

D

N[D]

Module

Module

RESULT: We can
completely identify !N[C]

X = N(C)∖N(D)

Z = N(D)∖V(C)

D
Delete neighbours of pink

vertices!

N(Y)

Separating Y

Solution Covering Family
G[S]

C

[Handling]|V(C) | ≥ 2

Y = V(G)∖N[C]

C
No edge

No edge
(-freeness)P5

Module

Module

Module

Module

Module

Module

D

N[D]

Module

Module

RESULT: We can
completely identify !N[C]

X = N(C)∖N(D)

Z = N(D)∖V(C)

D

N(Y)

Now, any replacement in the
green region is good!

Separating Y

Y = V(G)∖N[C]

C
No edge

No edge
(-freeness)P5

Module

Module

Module

Module

Module

Module

D

N[D]

Module

Module

X = N(C)∖N(D)

Z = N(D)∖V(C)

D

N(Y)

Finding Replacement For C

v

D1 D2

Delete such vertices !v

Y = V(G)∖N[C]
Module

Module

Module

Module

Remaining neighbours of D

D

Finding Replacement For C

D1 D2D1 D2

Partition remaining
into the two disjoint sets,

 and .

N[D]

N(D1) N(D2)

N(D2) N(D1)

Y = V(G)∖N[C]
Module

Module

Module

Module

Finding Replacement For C

Partition remaining
into the two disjoint sets,

 and .

Find independent sets
and of maximum
weights in and

, resp.

N[D]

N(D1) N(D2)

I1
I2

N(D2) ∪ D1
N(D1) ∪ D2

D

D1 D2D1 D2

N(D2) N(D1)I1
I2

RECALL
Max. Wt. Independent Set

on -free graphs has a
polynomial time algorithm

(Lokshtanov et al.)

P5

Y = V(G)∖N[C]
Module

Module

Module

Module

Finding Replacement For C

Partition remaining
into the two disjoint sets,

 and .

Find independent sets
and of maximum
weights in and

, resp.

N[D]

N(D1) N(D2)

I1
I2

N(D2) ∪ D1
N(D1) ∪ D2

D

D1 D2D1 D2

N(D2) N(D1)I1
I2

 is a
replacement for !

I1 ∪ I2
C

Solution Covering Family

For a graph and a weight function , a family of vertex subsets is a
solution covering family if for any of maximum total weight where is
bipartite, there is a sub-family such that:

Sets in are pairwise disjoint

No edge between different sets in , i.e., for distinct ,

G 𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G) G[S]
𝒞′￼ ⊆ 𝒞

S = ∪X∈𝒞′￼
X

𝒞′￼

𝒞′￼ X, Y ∈ 𝒞′￼ E(X, Y) = ∅

Given a -free graph on vertices and a weight function , there is a
polynomial-time algorithm that outputs a solution covering family of size .

P5 G n 𝗐 : V(G) → ℚ
O(n6)

LEMMA

Two Ingredients

Odd Cycle Transversal admits a polynomial time algorithm on -free graphs.P5

THEOREM

Ingredient 1: A polynomial-sized solution covering family.

Ingredient 2: Translating solution to finding independent sets on a -free auxiliary graph over a
solution covering family.

P5

Conclusion & Open Problems

Independent Set admits a polynomial time algorithm on -free graphs, which
also works for the counting version. Can we obtain such an algorithm for Odd
Cycle Transversal?

Pi

Conclusion & Open Problems

Independent Set admits a polynomial time algorithm on -free graphs, which
also works for the counting version. Can we obtain such an algorithm for Odd
Cycle Transversal?

The complete complexity classification Odd Cycle Transversal on -free graph
where is connected is fully known. What about disconnected s?

Pi

H
H H

Conclusion & Open Problems

Independent Set admits a polynomial time algorithm on -free graphs, which
also works for the counting version. Can we obtain such an algorithm for Odd
Cycle Transversal?

The complete complexity classification Odd Cycle Transversal on -free graph
where is connected is fully known. What about disconnected s?

Complexity status of other classical graph problems on such graph classes?

Pi

H
H H

Conclusion & Open Problems

Independent Set admits a polynomial time algorithm on -free graphs, which
also works for the counting version. Can we obtain such an algorithm for Odd
Cycle Transversal?

The complete complexity classification Odd Cycle Transversal on -free graph
where is connected is fully known. What about disconnected s?

Complexity status of other classical graph problems on such graph classes?

Pi

H
H H

Thanks!

