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Graph Pi

For ,   is the graph with:  
 

i ∈ ℕ Pi
V(Pi) = {1,2,⋯, i}
E(Pi) = {{j, j + 1} ∣ j ∈ {1,2,⋯, i − 1}}
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 and a bijective function  such that for ,  if  and 
only if  .

G = (V, E) H G H
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-free GraphsH
A graph  is -free if   does not have  as an induced subgraph, i.e., there is no 

 and a bijective function  such that for ,  if  and 
only if  .

G = (V, E) H G H
S ⊆ V(G) ϕ : V(H) → S h, h′ ∈ V(H) {h, h′ } ∈ E(H)

{ϕ(h), ϕ(h′ )} ∈ E(G)

-free graphs are disjoint union of cliques!P3



Bipartite Graphs

A graph  is bipartite if   can be partitioned into two sets,  and , s.t., 
for each ,  

 and , or 
 and 

G = (V, E) V V1 V2
{u, v} ∈ E(G)

u ∈ V1 v ∈ V2
v ∈ V1 u ∈ V2

V1 V2

Graph G = (V, E)



Odd Cycle Transversal
Input: A graph  and a weight function  

Task: Find a maximum weight induced bipartite subgraph of  , i.e., find  
of  maximum total weight such that  is bipartite.

G 𝗐 : V(G) → ℚ

G S ⊆ V(G)
G[S]

Graph G

V1 V2
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Some Relevant Results

[Chiarelli et al.] Odd Cycle Transversal is NP-hard on graph classes line graphs 
and graphs of  small girth. 

—Thus, also NP-hard on graphs with no claws or a fixed length cycle. 

[Chiarelli et al.] The problem is polynomial time solvable on -free graphs 
where  is the graph with a matching, or . 

[Okrasa et al.] On -free graphs the problem is polynomial time solvable. 

[Dabrowski et al.] On -free graphs the problem is NP-hard. 

The above results imply (prior to our work), the only connected graph  for 
which the status of  Odd Cycle Transversal on -free graphs was unknown was 

.
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Solution Covering Family
G[S]

C

{ }, , , , , ,…, , ,
solution covering family 𝒞

{ }, , , , , ,…, , ,

OR V(C) ∈ 𝒞

solution covering family 𝒞

, for ,   is 
bipartite and 

∃X ∈ 𝒞 S′ = (S∖V(C)) ∪ X G[S′ ]
𝗐(S′ ) ≥ 𝗐(S)

V(C) X

G[S′ ]

G[X]
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 has a dominating set 
 which is  or .

G[V(C) ∪ X]̂D ⊆ V(C) ∪ X P2 P3

For conn. -free graphsP5
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Solution Covering Family
G[S]

C

[Handling ]|V(C) | ≥ 2
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Finding Replacement For C

Partition remaining  
into the two disjoint sets, 

 and . 

Find independent sets  
and  of  maximum 
weights in  and 

, resp. 

N[D]

N(D1) N(D2)

I1
I2

N(D2) ∪ D1
N(D1) ∪ D2

D

D1 D2D1 D2

N(D2) N(D1)I1
I2

RECALL
Max. Wt. Independent Set 

on -free graphs has a 
polynomial time algorithm 

(Lokshtanov et al.) 
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Y = V(G)∖N[C]
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Finding Replacement For C

Partition remaining  
into the two disjoint sets, 

 and . 

Find independent sets  
and  of  maximum 
weights in  and 

, resp. 

N[D]

N(D1) N(D2)

I1
I2

N(D2) ∪ D1
N(D1) ∪ D2
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D1 D2D1 D2

N(D2) N(D1)I1
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 is a 
replacement for !

I1 ∪ I2
C



Solution Covering Family

For a graph  and a weight function , a family of  vertex subsets  is a 
solution covering family if  for any  of  maximum total weight where  is 
bipartite, there is a sub-family  such that: 

 

Sets in  are pairwise disjoint 

No edge between different sets in , i.e., for distinct ,  

G 𝗐 : V(G) → ℚ 𝒞 ⊆ 2V(G)

S ⊆ V(G) G[S]
𝒞′ ⊆ 𝒞

S = ∪X∈𝒞′ 
X

𝒞′ 

𝒞′ X, Y ∈ 𝒞′ E(X, Y) = ∅

Given a -free graph  on  vertices and a weight function , there is a 
polynomial-time algorithm that outputs a solution covering family of size .

P5 G n 𝗐 : V(G) → ℚ
O(n6)

LEMMA



Two Ingredients

Odd Cycle Transversal admits a polynomial time algorithm on -free graphs.P5

THEOREM

Ingredient 1: A polynomial-sized solution covering family. 

Ingredient 2: Translating solution to finding independent sets on a -free auxiliary graph over a 
solution covering family.

P5
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Independent Set admits a polynomial time algorithm on -free graphs, which 
also works for the counting version. Can we obtain such an algorithm for Odd 
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Conclusion & Open Problems

Independent Set admits a polynomial time algorithm on -free graphs, which 
also works for the counting version. Can we obtain such an algorithm for Odd 
Cycle Transversal? 

The complete complexity classification Odd Cycle Transversal on -free graph 
where  is connected is fully known. What about disconnected s? 

Complexity status of  other classical graph problems on such graph classes?

Pi

H
H H

Thanks!


