
Short Notes: Amortized Analysis of Fibonacci Heap Using

Accounting Method

Palash Dey
Indian Institute of Technology, Kharagpur

palash.dey@cse.iitkgp.ac.in

In this note, we will prove that the amortized time complexities of insertion, extract-min, and

decrease key operations on an n-node Fibonacci heap are respectively O(1),O(logn),O(1). We

will use accounting method for proving this. We will maintain the following invariant throughout

the run of the algorithm.

Invariant: Every node in the root list has $1 and every marked node has $2 stored with it.

Consider a sequence of n operations where every operation is either insert or extract-min or

decrease key operation. We will prove this claim using induction on n. We will use the fact that

the maximum degree of any node in an n-node Fibonacci heap is at most logφ n where φ =
√

5−1
2 .

For n = 0, the Fibonacci heap is empty and thus the invariant holds. So the induction base case

holds.

Let us assume that the invariant holds for every sequence of n− 1 operations.

Suppose the n-th operation is an insertion operation. We charge $2 for the operation. The

actual cost of insertion is O(1) which we pay using $1 and store the remaining $1 with the newly

inserted element. Hence, the loop invariant holds after the insertion operation also.

Suppose the n-th operation is an extract-min operation. Suppose h1 and h2 are respectively

the number of nodes in the root list before and after the n-th operation. The actual cost of the

operation is O(h1). We pay this O(h1) actual cost with the $h1 stored with the h1 nodes in the

root list. We charge $⌈1 + logφ n⌉ for the extract-min operation which we store, $1 in every node

in the root list. This is enough since (1 + h2) is at most the maximum degree plus one, that is

$⌈1 + logφ n⌉. Hence, the loop invariant holds after the extract-min operation also.

Suppose the n-th operation is a decrease key operation. We charge $4 for every decrease key

operation. The decrease key operation causes at most one cut operation and one or more cascading

cut operations. Suppose the decrease key operation causes k cascading cut operations. Since every

node cut through cascading cut operation was marked before the n-th operation, they had $2

stored with them. Cutting every such node and making it part of root list and updating H.min is

needed takes O(1) actual cost which we pay by spending $1 from the $2 stored with the node being

cut in the cascading cut. The remaining $1 is stored with that node which is required to satisfy

Statutory warning: This is a draft version and may contain errors. If you find any error, please send an email to the author.

2

the invariant. The actual cost of decreasing the key, cutting it if needed, and updating H.min if

needed incurs O(1) actual cost which we pay by spending $1 from the $4 that we have charged

the decrease key operation. Note that we still have $3 left with us. If the node on which decrease

key has been performed, becomes part of the root list, then we spend $1 from the remaining $3

to store with it. Note that, we still has at least $2 remaining with us. Notice that, at most one

unmarked node can be marked in the decrease key operation. If that happens, then we store the

remaining $2 with that node which was unmarked before the n-th and got marked during the n-th

operation. Hence, the invariant continue to hold after the n-th operation.

Hence, the actual cost of any sequence of n operations is fully paid off by the total amount that

we have charged. This proves that the amortized time complexities of insertion, extract-min, and

decrease key operations on an n-node Fibonacci heap are respectively O(1),O(logn),O(1).

3

