

Practice Problems: Polytope, LP Duality, Complementary Slackness

Palash Dey
Indian Institute of Technology, Kharagpur

February 13, 2026

Submit the solutions of the questions marked (*) in PDF format generated using Latex by **February 20, 2025**.

1. (*) In the Odd Cut problem, the input is an undirected edge-weighted graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ and we need to output a cut $(\mathcal{A}, \mathcal{V} \setminus \mathcal{A})$, if one exist, of minimum weight over all cuts whose both sides have an odd number of vertices. Design a polynomial-time algorithm for the Odd Cut problem. Observe that this algorithm gives a polynomial-time separation oracle for the perfect matching polytope for general graphs.
2. In the Even Cut problem, the input is an undirected edge-weighted graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ and we need to output a cut $(\mathcal{A}, \mathcal{V} \setminus \mathcal{A})$, if one exist, of minimum weight over all cuts whose both side have an even number of vertices. Design a polynomial-time algorithm for the Even Cut problem.
3. For a polyhedron \mathcal{P} in \mathbb{R}^n , prove the following.
 - (a) A point $v \in \mathbb{R}^n$ is a vertex of \mathcal{P} if and only if v cannot be written as a convex combination of points in $\mathcal{P} \setminus \{v\}$.
 - (b) A point $v \in \{x \in \mathbb{R}^n : Ax \leq b\}$ is a vertex if and only if there exists a subsystem $A'x \leq b'$ of $Ax \leq b$ such that $\{v\} = \{x \in \mathbb{R}^n : A'x = b'\}$ and the rank of A' is n .
 - (c) A polytope is the convex hull of its vertices.
 - (d) If \mathcal{P} is a polytope, then for every vector $w \in \mathbb{R}^n$, there exists a vertex \bar{x} of the polytope \mathcal{P} which maximizes $w^T x$ among points $x \in \mathcal{P}$.
4. A *matchable set* of a graph \mathcal{G} is the set of all vertices matched in some matching of \mathcal{G} . Let \mathcal{P} be the convex hull of characteristic vectors of stable sets of a bipartite graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ with bipartition $\{\mathcal{A}, \mathcal{B}\}$. Prove that \mathcal{P} is the same as the polytope defined by the following constraints. We denote the set of neighboring vertices of any $C \subseteq \mathcal{A}$ by $N(C)$.

$$\begin{aligned} \left(\sum_{v \in C} x_v \right) - \left(\sum_{v \in N(C)} x_v \right) &\leq 0, \forall C \subseteq \mathcal{A} \\ x(\mathcal{A}) - x(\mathcal{B}) &= 0 \\ 0 \leq x_v &\leq 1, \forall v \in \mathcal{V} \end{aligned}$$

5. A set of vertices of a graph is called a vertex cover if the set contains at least one end point of every edge. Show that the following polytope is the vertex cover polytope of a graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ if and only if \mathcal{G} is a bipartite graph. Also show that the following polytope is half-integral. Write its dual linear program and complementary slackness conditions. Show integrality of this polytope for bipartite graphs using complementary slackness conditions.

$$\begin{aligned} \min \quad & \sum_{i \in \mathcal{V}} w_i x_i \\ \text{s.t.} \quad & x_u + x_v \geq 1 \quad \forall \{u, v\} \in \mathcal{E}, \\ & 0 \leq x_i \leq 1 \quad \forall i \in \mathcal{V}. \end{aligned}$$

6. Write the dual of the following linear programs and write the complementary slackness conditions.

(a)

$$\begin{aligned} \min \quad & 4x_1 + 3x_2 - x_3 \\ \text{s.t.} \quad & 2x_1 + x_2 \geq 5, \\ & x_1 + 3x_3 \geq 6, \\ & x_1, x_2 \geq 0. \end{aligned}$$

(b)

$$\begin{aligned} \min \quad & 2x_1 + x_2 + 3x_3 \\ \text{s.t.} \quad & x_1 + x_2 + x_3 = 4, \\ & 2x_1 - x_2 \geq 1, \\ & x_1, x_2, x_3 \geq 0. \end{aligned}$$

(c)

$$\begin{aligned} \max \quad & 3x_1 - x_2 \\ \text{s.t.} \quad & x_1 - x_2 \leq 5, \\ & 2x_1 + x_2 \geq 3, \\ & x_1 \geq 0 \end{aligned}$$

7. Write a linear programming formulation of maximum $s - t$ flow in a directed edge-weighted graph. Write its dual and complementary slackness conditions.

8. Write a linear programming formulation for matching polytope of general graphs. Write its dual and complementary slackness conditions.