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1. (») In the Odd Cut problem, the input is an undirected edge-weighted graph § (V,€) and we
need to output a cut (A, V \ A), if one exist, of minimum weight over all cuts whose both sides
have an odd number of vertices. Design a polynomial-time algorithm for the Odd Cut problem.
Observe that this algorithm gives a polynomial-time separation oracle for the perfect matching
polytope for general graphs.

2. In the Even Cut problem, the input is an undirected edge-weighted graph G (V,€) and we need
to output a cut (A, "V \ A), if one exist, of minimum weight over all cuts whose both side have
an even number of vertices. Design a polynomial-time algorithm for the Even Cut problem.

3. For a polyhedron P in R™, prove the following.

(a) A point v € R™ is a vertex of P if and only if v cannot be written as a convex combination
of points in P \ {v}.

(b) Apointv € {x € R": Ax < b} is a vertex if and only if there exists a subsystem A’x < b’

of Ax < b such that {v} ={x € R": A’x = b’} and the rank of A’ is n.

(c) A polytope is the convex hull of its vertices.

(d) If P is a polytope, then for every vector w € R™, there exists a vertex X of the polytope P
which maximizes w'x among points x € P.

4. A matchable set of a graph G is the set of all vertices matched in some matching of G. Let P be the
convex hull of characteristic vectors of stable sets of a bipartite graph § (V,€) with bipartition
{A, B}. Prove that ? is the same as the polytope defined by the following constraints. We denote
the set of neighboring vertices of any C C A by N(C).

(ZVGCXV) - (ZVEN(C] Xv) <0,VCCA

5. A set of vertices of a graph is called a vertex cover if the set contains at least one end point of
every edge. Show that the following polytope is the vertex cover polytope of a graph G (V,€) if
and only if G is a bipartite graph. Also show that the following polytope is half-integral. Write its
dual linear program and complementary slackness conditions. Show integrality of this polytope
for bipartite graphs using complementary slackness conditions.
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6. Write the dual of the following linear programs and write the complementary slackness condi-
tions.

(@
min  4x; + 3xy — X3
s.t. 2X1 +x3 =5,
X1+ 3x3 > 6,
X1,%X2 = 0.
(b)
min 2x1 + X2 + 3x3
s.t. X1 +Xx2+x3 =4,
2x1 —x2 2 1,
X1,X2,Xx3 = 0.
()

max 3x; — Xz
s.t. X1 —Xxg <5,
2x1 +%x2 > 3,
x1 =0

7. Write a linear programming formulation of maxumum s — t flow in a directed edge-weighted
graph. Write its dual and complementary slackness conditions.

8. Write a linear programming formulation for matching polytope of general graphs. Write its dual
and complementary slackness conditions.



