

Practice Problems: Gomory-Hu Tree

Palash Dey
Indian Institute of Technology, Kharagpur

January 8, 2026

Submit the solutions of the questions marked (*) in PDF format generated using Latex by **January 15, 2026**. Discussion is encouraged but every student should write his/her solution independently.

1. (*) Design an iterative algorithm to compute a Gomory-Hu tree of a connected undirected weighted graph by computing $n - 1$ many $s - t$ minimum cut computations. Analyze the time complexity of your algorithm. Prove its correctness.
2. (*) Design a recursive algorithm to compute a Gomory-Hu tree of a connected undirected weighted graph by computing $n - 1$ many $s - t$ minimum cut computations. Analyze the time complexity of your algorithm. Prove its correctness.
3. Prove or disprove: Every connected, undirected, unweighted graph has a unique Gomory-Hu tree.
4. Prove or disprove: if a connected, undirected, weighted graph \mathcal{G} has a unique $s - t$ cut for every pair of vertices s and t , then \mathcal{G} has a unique Gomory-Hu tree.
5. Prove or disprove: There exists an algorithm that, given an unweighted graph \mathcal{G} , its Gomory-Hu tree \mathcal{T} , and an edge e in \mathcal{G} , outputs a Gomory-Hu tree of $\mathcal{G} \setminus \{e\}$ in $o(n)$ time.
6. Prove or disprove: There exist a connected, undirected, unweighted graph on n vertices that has $2^{\Theta(n)}$ distinct Gomory-Hu trees.