

Practice Problems: Edmond's Blossom Algorithm, Matroid

Palash Dey
Indian Institute of Technology, Kharagpur

January 15, 2026

Submit the solutions of the questions marked (\star) in PDF format generated using Latex by **January 22, 2025**.

1 Edmond's Blossom Algorithm

1. **(\star) Gallai-Edmond Decomposition:** The vertex set \mathcal{V} of every graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ can be partitioned into three sets, \mathcal{A} , \mathcal{B} , and \mathcal{D} . The set \mathcal{D} consists of all vertices which are left unmatched in at least one maximum cardinality matching. They are called inessential vertices. The other vertices, i.e. the vertices in $\mathcal{V} \setminus \mathcal{D}$ are called essential vertices since they are matched in every maximum matching of \mathcal{G} . The set \mathcal{A} consists of all essential vertices which are neighbor of at least one vertex in \mathcal{D} . The remaining set of essential vertices is called \mathcal{B} . Design an algorithm to construct the Gallai-Edmond decomposition of any given graph. (Hint: modify Edmond's blossom algorithm)

2 Matroids

Let $\mathcal{M} = (S, \mathcal{I})$ be any matroid.

2. Let $B \subset S$ be any subset of S and J a basis of B . We define another matroid $\mathcal{M}' = (S', \mathcal{I}')$ where $S' = S \setminus B$ and $\mathcal{I}' = \{J' \subseteq S' : J' \cup J \in \mathcal{I}\}$. Prove that \mathcal{M}' is a matroid that does not depend of J and the rank of any $A \subseteq S'$ in \mathcal{M}' is the rank of $A \cup B$ in \mathcal{M} minus the rank of B in \mathcal{M} .
3. Let $J \in \mathcal{I}$ and $e \in S$ be any. Then $J \cup \{e\}$ contains at most one circuit.
4. A *branching* of a directed graph is a forest (of the underlying undirected graph) in which each edge has in-degree at most one. Suppose the edges of \mathcal{G} are weighted. We want to compute a maximum weight branching of \mathcal{G} . Model this problem as a weighted matroid intersection problem.
5. Let \mathcal{G} be a bipartite graph with $(\mathcal{L}, \mathcal{R})$ be a bipartition of the vertices. A transversal matroid \mathcal{M} is defined on the set \mathcal{L} where a subset $X \subseteq \mathcal{L}$ is an independent set if and only if X can be perfectly matched to a subset of \mathcal{R} . Show that the independence system defined above is a matroid.
6. Show that every uniform matroid is a transversal matroid.
7. Let $\mathcal{M} = (S, \mathcal{I})$ be any matroid. Define the dual $\mathcal{M}^* = (S, \mathcal{I}^*)$ of \mathcal{M} as follows. The ground set of \mathcal{M}^* is the ground set of \mathcal{M} . A subset A of S is an independent set of \mathcal{M}^* if and only if $S \setminus A$ contains a basis of \mathcal{M} . Show that \mathcal{M}^* is a matroid.
8. Let (X_1, \dots, X_k) be a partition of a set S and $d_i \geq 0$ for every $i \in [k]$. We say a set $A \subseteq S$ is independent if $|A \cap X_i| \leq d_i$ for every $i \in [k]$. Prove that this independence system is a matroid.
9. **(\star)** Consider the following orientation problem. Given an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ and integers $d_v \geq 0$ for every $v \in \mathcal{V}$, compute if it is possible to orient the edges of \mathcal{G} such that the out-degree of every vertex $v \in \mathcal{V}$ is at most d_v in the resulting directed graph. Design a polynomial-time algorithm for this problem.

10. Suppose we are given an undirected graph \mathcal{G} whose every edge has a (not necessarily distinct) color. Consider the problem of computing if the graph has a spanning tree whose all edges have different colors. Design a polynomial-time algorithm for this problem by reducing it to the matroid intersection problem.
11. Given a matrix whose columns are colored, design a polynomial-time algorithm to select a maximum set of linearly independent columns using at most one per color.