
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR
Selected Topics in Algorithms: First Class Test

Date of Examination: 30th January 2026

Duration: 45 minutes

Subject: CS60086 Selected Topics in Algorithms

Total marks: 20

1. Prove or disprove: There exists an algorithm that, given an unweighted graph \mathcal{G} , its Gomory-Hu tree \mathcal{T} , and an edge e in \mathcal{G} , outputs a Gomory-Hu tree of $\mathcal{G} \setminus \{e\}$ in $o(n)$ time.

[6 Marks]

Solution Sketch. Let \mathcal{G} be a cycle on n vertices. A star graph is a Gomory-Hu tree of \mathcal{G} . If we delete any edge e from \mathcal{G} , then since $\mathcal{G} \setminus \{e\}$ is a path, assuming $n \geq 5$, the unique Gomory-Hu tree of $\mathcal{G} \setminus \{e\}$ is $\mathcal{G} \setminus \{e\}$ itself which is $\Omega(n)$ edges addition/deletion away from any star on the vertex set of \mathcal{G} . \square

2. Design an algorithm that takes an undirected unweighted graph \mathcal{G} as input and outputs a vertex that belongs to every maximum cardinality matching of \mathcal{G} .

[7 Marks]

Solution Sketch. Compute a maximum matching M . Compute the alternative BFS tree. Every vertex marked “odd” must be matched in every maximum cardinality matching of \mathcal{G} thanks to Tutte’s theorem. \square

3. Prove or disprove: Let $\mathcal{M} = (S, \mathcal{I})$ be a matroid, $J \in \mathcal{I}$, $e_1, e_2 \in S$. Then $J \cup \{e_1, e_2\}$ contain at most two circuits.

[7 Marks]

Solution Sketch. Counter example: Let $S = \{x, y, z\}$ and \mathcal{M} is a uniform matroid of rank 1 over S . That is every subset of S of cardinality at most 1 is an independent set in \mathcal{M} . Let us take $J = \{x\}$. Then $J \cup \{y, z\}$ has three circuits, namely $\{x, y\}, \{y, z\}, \{z, x\}$. \square