Practice Problems: Fast Subset Convolution

Palash Dey Indian Institute of Technology, Kharagpur

April 10, 2025

Submit the solutions of the questions marked (*) in PDF format generated using Latex by April 11, 2025.

- 1. Design a $O^*(2^n)$ time algorithm for counting the number of spanning forests of an undirected graph using fast subset convolution.
- 2. Given two functions $f, g : 2^{\mathcal{U}} \longrightarrow \mathbb{R}$ where $\mathcal{U} = [n]$, show how we can compute the following functions for every subset $S \subseteq \mathcal{U}$ together using fast subset convolution in $\mathcal{O}^*(2^n)$ time.

$$\begin{aligned} \max_{X\subseteq S} f(X) + g(S\setminus X) \\ \min_{X\subseteq S} f(X) + g(S\setminus X) \end{aligned}$$

- 3. Design a $O^*(2^n)$ time algorithm for computing the domantic number of an undirected graph using fast subset convolution.
- 4. (*)The covering product of two functions f, $g: 2^{\mathcal{U}} \longrightarrow \mathbb{R}$, denoted by f $\star_c g$ is defined for all $S \subseteq \mathcal{U}$ as

$$(f \star_{c} g)(S) = \sum_{X,Y \subset S: X \cup Y = S} f(X)g(Y)$$

The packing product of two functions $f,g:2^{\mathcal{U}}\longrightarrow \mathbb{R},$ denoted by $f\star_p g$ is defined for all $S\subseteq \mathcal{U}$ as

$$(f \star_p g)(S) = \sum_{X,Y \subset S: X \cap Y = \emptyset} f(X)g(Y)$$

The intersecting covering product of two functions $f, g : 2^{\mathcal{U}} \longrightarrow \mathbb{R}$, denoted by $f \star_{ic} g$ is defined for all $S \subseteq \mathcal{U}$ as

$$(f \star_{ic} g)(S) = \sum_{X,Y \subset S: X \cup Y = S, X \cap Y \neq \emptyset} f(X)g(Y)$$

Design a $\mathcal{O}^*(2^n)$ time algorithm for computing the covering product, packing product, and intersecting covering product of two functions f, g : $2^{\mathcal{U}} \longrightarrow \mathbb{R}$.